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Abstract 
The quantity and complexity of cyber-attacks are both on the rise. For defenses to keep up with the 

ever-evolving threats, it will need ever-greater technological advances and fresh ideas. Traditional 

security methods like intrusion detection and deep packet inspection are still used and recommended, 

but they are not enough to keep up with the growing number of security threats. The widespread usage 

of APT's communication networks makes them more susceptible to assaults by cybercriminals, with 

possibly catastrophic outcomes. Critical infrastructures are monitored and controlled by Advanced 

Persistent Attack using real-time monitoring to identify aberrant behaviors of the system. The most 

existing Advanced Persistent Threat defenses were created to protect IT infrastructure and are seldom 

useful in more robust settings like factories. The primary objective of this thesis is to use various 

learning-based approaches to evaluate network traffic and sensory measures in real-time in order to 

identify and locate cyber-attacks. In order to achieve this, numerous learning-based models are 

presented, such as a self-tuning and scalable deep learning and classification model for cyber-attack 

site identification and an ensemble deep learning-based cyber-attack detection method for unbalanced 

Advanced Persistent Threat datasets. Two real-world advanced persistent threat datasets are used to 

assess the effectiveness of the suggested models. In terms of f1-score, recall, and accuracy, the models 

presented do better than the most recent research. 
 

Keywords: Machine learning, cyber-attack, network security, python, advanced persistent attack, data 

preprocessing, and classification 

 

1. Introduction 

The act of trying to determine who was responsible for a piece of malicious software or a 

piece of code that was used in a cyber-attack is referred to as "cyber-attack attribution." The 

process of attributing assaults in cyberspace has grown more important as the number of 

cyber-attacks has increased. Reverse engineering is one method that may be used to 

determine who is responsible for a cyber-assault. We are able to obtain data about the 

malware executable file, such as the date it was created, the variable names that were 

utilized, and the library calls that were imported, from the metadata that accompanies the 

file. In an attribution analysis, these pieces of information might serve as features. In order to 

attribute the assaults, we will need to first extract the elements from the malware that may be 

utilized for attribution and then analyze those features using some method. 

There are more and more security problems involving Industrial Control Systems (ICS) as 

digitalization advances at an accelerated pace without regard to security [1, 2]. Since its 

inception, the ICS has been protected from cyber-attacks by adopting proprietary software 

structures and communication protocols. By using common communication interfaces and 

standard software installed in distant instruments, ICS manufacturers are progressively 

introducing off-duty management and almost autonomous operations. It is now more 

susceptible to cyber-attacks from both within and outside of ICS facilities. There are a 

number of essential infrastructure facilities that manage smaller power processes such as 

railway stations, airports, and manufacturing plants [4].  
[5, 6] In today's world, critical infrastructure relies on Internet of Things (IoT)-enabled cyber-

physical systems to connect and interact with various items and systems all over the world [7, 

8]. Although IoT technologies have many advantages for ICS, hackers and cybercriminals 

also have a lot to gain from them [9]. People's health and safety, industrial processes, and 

financial resources can all be jeopardized if a cyber-attack on vital infrastructure is 

successful [3]. As depicted in Fig 1, critical infrastructure facilities have been subjected to  
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cyber-attacks since 2010 [10, 11]. Stuxnet was one of the most 

well-known cyber-attacks, targeting Iranian nuclear 

enrichment centrifuges in 2010 [10, 11]. Zero-day exploits 

were mounted on a USB drive and malicious code was 

introduced into Siemens PLCs, causing centrifuges to spin 

far faster than planned [10]. In the interim, the malware alters 

sensor readings to hide the attack of the operators 

themselves. Early cyber-attacks on critical infrastructure 

installations have uncovered ICS security flaws and the 

threats they entail. During the Black-Energy attack in 2015, 

Ukraine's power grid was targeted, triggering a significant 

power outage that affected 230,000 people. 

 

 
 

Fig 1: History of cyber assaults on industrial control systems during the last decade 

 

Between 2016 and 2017, a breach of Shamoon's first version 

was used in conjunction with the Stone Drill malware in a 

series of large cyber-attacks [12]. Another big cyber-attack 

occurred in 2018 when three US gas pipeline companies 

stated that their digital communication networks had been 

knocked down for many days [13]. Cyber-attacks on Saipem, 

an Italian oil and gas company, were reported in October of 

the year [12]. Saipem's infrastructure in the Mideast, India, 

Scotland, and Italy were allegedly attacked. Symantec, in 

response to Saipem's statement, revealed evidence of similar 

assaults on two other Saudi Arabian and UAE-based fossil 

fuel corporations, as well as Filename malware [30]. 

According to Kaspersky Lab, malicious cyber activities and 

security incidents against commercial vital infrastructure 

facilities have increased by more than 50% in the recent 

decade [14, 15]. 

The goal of this thesis is to develop a deep learning-based 

system that can detect, categorizing, and locating the 

location of cyber-attacks against ICS and APT. It is 

essential to do an analysis of the malware and get its 

artifacts so that we can acquire a better idea of who the 

attacker is. The passage of time and the growing reliance of 

our society on our technical infrastructure will only serve to 

increase the frequency with which cyber assaults are carried 

out. The classification of malware according to kind, 

authorship, and other important categories will be facilitated 

with the assistance of cyber-attack attribution, which will be 

an essential component in the fight against the creation of 

malware. This is particularly helpful when thinking about 

malware that is sponsored by the state. Due to the fact that 

conventional forms of warfare will eventually be replaced 

by cyber-warfare, it is becoming more important to be able 

to determine who created the malicious software as well as 

the nation from which it originated. The members of our 

team are fluent in Python and have prior experience working 

with machine learning methods. 

 

2. Materials and methods on ensemble deep learning to 

detect cyber-attacks 

The original contribution's last section analyzes an ensemble 

deep learning-based model for attack detection in 

heterogeneous datasets derived from industrial machinery 

control systems. Later, it delves into how to identify the 

source of cyber-attacks in both small and large-scale 

manufacturing plants with the use of self-tuning, scalable, 

deep learning classification models. Here, we'll detail the 

process and rationale behind each contribution and show 

how they satisfy the stated goals.  

In the first experiment, several diverse real-world ICS 

datasets are used to evaluate a generalized ensemble deep 

learning approach to cyber-attack detection in ICS. We 

suggest using this method in the pilot research. Multiple 

unsupervised RF, each learning unique representations from 

unbalanced datasets, make up the proposed deep learning 

model. Next, the representations produced by each RF are 

passed to a Deep Neural Network (DNN) through a super 

vector, where they are fused using a fusion activation 

vector. Finally, a Decision Tree (also known as a binary 
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classifier) is utilized to identify hazards from the rearranged 

representations, rather than a traditional classifier.  

 

 Making a learning model for deep representations with 

the intention of constructing new representations that are 

fairer. Resilience (as measured by f-score) and attack 

detection accuracy (both also improved) in an 

imbalanced setting were both a result of the new 

representations. 

 Second, employing a deep learning ensemble built on RF 

classifiers to recognize cyberattacks based on the new 

representations, which improves detection accuracy 

while concurrently decreasing false positives. 

 Third, develop a generic model that requires little to no 

adaptation to work across a wide range of critical 

infrastructure facilities. To detect cyberattacks in novel 

ICS settings, the proposed architecture employs easily 

trainable self-learning methods. 

 

Data Collection 

Initially, the suggested framework's performance was 

measured against that of randomly generated ICS and APT 

models using two distinct ICS datasets. Both come from 

separate sources; the former is sourced through a network of 

gas pipelines, while the latter is processed in a water 

purification plant. One ICS dataset was chosen from a water 

distribution plant and another from an electric power 

intelligent control system to help develop and update the 

final framework's ability to pinpoint the precise site of 

cyber-attacks. 

 

Developing Initial Framework 

The first step in testing the effectiveness of the proposed 

framework was to compare it against a random ICS model 

using two separate ICS datasets and APT for another 

database. The first is taken via a gas pipeline system, while 

the second is gathered at a water treatment facility. With the 

goal of refining and enhancing the overall architecture, we 

decided to include data from a water distribution facility and 

a smart control system for electric power into the ICS. The 

goal of these data sets is to facilitate research on the 

physical locations of cyber-attacks. 

 

Final Framework 

While this is a great way to boost the f-score of your 

classifiers, the examination of the first application shows 

that pinpointing the exact site of an attack without 

jeopardizing an industrial process is quite challenging. This 

is true despite the fact that this strategy produces strong 

results. Because of this, we devised scalable deep learning 

and categorization models that can substantially identify 

cyber-attacks, reduce the amount of downtime experienced 

after a breach has been discovered, and limit the 

downstream damage to equipment. 

 

2.1 Ensemble Deep Learning-based Cyber-Attack 

Detection Algorithm for IICSD 

This section introduces a flexible computational intelligence 

approach that can process raw, imbalanced data. With this 

model, we hope to avoid some of the pitfalls of earlier 

approaches. To improve the accuracy of a classification task 

using a deep learning ensemble model [16, 17], we first 

construct a new, more balanced representation of the data 

from the original dataset. Each instance of the deep learning 

model is an unsupervised RF that acquires its own unique 

representations from data that is not uniformly distributed. 

In order to identify attacks, the RF model employs several 

auto-encoders (AE) to learn new representations from 

unlabeled input and thereby gain diverse patterns. Then, a 

DNN is given a super vector including the freshly produced 

representations from each RF [18], and the representations 

are fused using the activation vector from the super vector. 

Last but not least, we utilize a DT in the form of a binary 

classifier to identify assaults using the reworked 

representations. Figure 2 displays the overall framework of 

the new model that is being presented. 

 

 
 

Fig 2: An orientation to the stacked auto-encoder concept and method 
 

2.2 The Proposed Ensemble Deep Representation 

Learning Model 

The vast inequalities that exist in real-world ICS are mostly 

disregarded by both existing methodologies and those 

offered in the literature (the number of attack samples are a 

lot less than the number of normal samples).  

This will result in weak f-measures, which are indicative of 

how poorly these models perform in an imbalanced setting 

such as ICS. Therefore, due to their poor performance in 

such settings, these models cannot be used in practical 

applications. 
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Misclassification of the newly revealed hazardous data is 

quite likely once a model has been deliberately trained using 

an exceedingly imbalanced dataset. To address this 

challenge, we developed an RF-based ensemble deep 

representation-learning model. The overall efficiency of the 

model will increase thanks to this modification. In order to 

develop new representations from the data, an equal 

balanced set is extracted and then passed on to several AE 
[19]. The input sample xi from the hidden layer's 

corresponding sample set X is represented by the equation 

below. 

 

 (1) 

 

Where M and c stand for the neuron weight matrices and 

bias vectors of the input and hidden layers, respectively [20, 

21]. Once training has commenced, stacked multi-layer AEs 

may be built by using the function of the hidden layer to 

update the subsequent input layer. Despite the fact that 

using an ensemble model might improve computing 

efficiency somewhat, it was evident that using many AE 

would result in far superior f-measure scores. 

Our model's generalizability is improved by adding a 

dropout layer, which makes the final result less sensitive to 

the original input. Multi-network cross-validation and in-

depth evaluation of past loss experience and accuracy led to 

the optimal choice of nodes and layers. In order to express 

the cost function, which is based on binary cross entropy 

(BCE), we use the following notation: 

 

 (2) 

  

Both the attack and control samples are denoted by the 

variables y1 and y2 here. The likelihood of discovering an 

attack sample, p(y), may be larger than zero. To prevent the 

AE's hidden layer from shrinking and the system from 

becoming slow and unlearning, BCE was used instead of 

MSE. 

 

2.3 Model for Detecting Attacks Using an Ensemble of 

Deep Learning Techniques 

Once the new models are built using the imbalanced dataset, 

an ensemble of DNN classifiers is utilized to differentiate 

between typical and aberrant behavior. After the 

representations are fused, a super vector with a fusion 

activation function is generated and fed into a DT classifier 

to be used in the detection of attacks. The DT [23] classifier 

was selected as the most efficient after extensive testing of 

other machine learning classifiers. The activation function 

for fusion in the sigmoid layer may be written as follows: 

 

 (3)  

 

When  is the label of the ith sample and ti is the prediction 

of the ith sample, L1 is the fusion perceptron of the sigmoid 

layer. Samples that are considered unstable have a weight of 

ws, whereas samples that are considered stable have a 

weight of wl. To better discover unstable samples, we make 

ws greater than wl and use wl = 1 as a baseline for 

successful unstable pattern mining [24, 26]. 

The accuracy and f-measure were increased by 

experimenting with different numbers of hidden layers, 

networks, batch sizes, training methods, epochs, and 

dropout layers in a for-loop. Rectified Linear Unit (ReLU) 

activation function is used in both RF and DNN [27] for 

maximum effectiveness on the following metrics: 

 

 (4) 

 

where x is your own personal experience. Approach 1 

provides a concise explanation of the suggested algorithm 

for the detection of attacks.  

 

3. Data Preprocessing 

It was then necessary to sanitize the data for usage in the 

machine learning model. All values in the language and 

library columns have been converted to uppercase to 

prevent the model from incorrectly distinguishing between 

them. The library and language features columns were then 

one-hot encoded [28]. As a consequence, it became necessary 

to set up fake variables to represent the various library and 

language combinations. Finally, the APT categories were 

converted into numbers for use in the classification 

algorithm. Another 792 rows were deleted because they 

included numerous columns with null values. It was reduced 

to 148 characteristics and 2862 rows after preprocessing.  

 

3.1 Data Classification 

We needed to think about whether or not the malwares were 

packaged so that we could do static analysis. Because the 

malware's format has been altered by packing, a sort of code 

obfuscation, by compression or encryption, we would 

require special unpacking tools in order to get the necessary 

artifacts from the program. Thus, we separated all of our 

malware into unpacked and packed categories using a 

program called PEiD that can tell whether a sample of 

malware is packed. The date provides a summary of the 

total number of both packed and unpacked malware samples 

across all APT families [29]. For attribution purposes, we 

have only ever utilized unpacked malware samples. There 

are 3,591 malware samples once they are decompressed. 

We developed a python script that would gather all of the 

aforementioned information into a single csv file after first 

extracting it from each of the json malware report files. We 

prepared a CSV file that included the aforementioned three 

properties, resource (also known as the hash of the 

malware), and APT group columns, and then we 

downloaded it from the GitHub repository.  

 

4. Results and Experiments 

4.1 APT Malware Dataset 

About 3,740 unique malware strains have been linked to 13 

Advanced Persistent Threat (APT) groups that, according to 

reports, get financing from at least five different countries. 

Several Machine Learning algorithms were run on this 

dataset to determine authorship, and the results were 

compared using this data as a baseline. Future benchmarks 

or malicious software might benefit from this dataset's 

analysis. 

The usage of several decision trees in Random Forest (RF) 

helps to minimize over-fitting, thus we choose to employ it 

for our machine learning investigation. The crucial aspects 

of Random Forest are also relatively simple to compute. 

Additionally, the Random Forest prevents error correlation 

among trees used for making predictions. For this reason, 

we decided to divide the total amount of data into two equal 
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halves for use in training and testing. The RF Classifier in 

the scikit-learn library was put to good use. Initial values for 

the RF Classifier's hyperparameters were: • min samples 

leaf = 50, min_samples_leaf = 50, n_estimators = 150, 

bootstrap = True, oob_score = True, n_jobs = -1, 

random_state = seed, Max features = 'auto' 58% accuracy 

was the best performance for the model. Figure 3, Figure 4, 

and Table 1 show the confusion matrix, precision, recall, 

and f1-score assessment results obtained prior to 

preprocessing the data, respectively. 

We have evaluated the model under a variety of unbalanced 

conditions to see how well the suggested strategy performs. 

An unbalanced ratio of 0.1 indicates 10% attack and 90% 

normal samples, while an imbalanced ratio of 1 indicates 

50% attack and 50% normal samples. 

 
Table 1: Performance evaluation before preprocessing malware data 

 

Classes Precision Recall F1-score support 

C1 0.48 0.85 0.62 126 

C2 1.00 0.27 0.43 62 

C3 0.00 0.00 0.00 10 

C4 0.00 0.00 0.00 28 

C5 0.00 0.00 0.00 46 

C6 1.00 0.12 0.22 81 

C7 0.00 0.00 0.00 50 

C8 0.74 0.50 0.60 86 

C9 0.89 0.95 0.92 41 

C10 0.88 1.00 0.93 113 

C11 0.68 0.96 0.79 94 

C12 0.32 0.66 0.43 122 

Accuracy 0.58 859 

 

 
 

Fig 3: Confusion matrix before preprocessing malware data 
 

Form the results above on data before preprocessing, we 

observe the accuracy is 58% on data supported 859 for 12 

classes shown in Table 3. 

 

 
 

Fig 4: Classification performance on different classes before 

malware data preprocessing (C indicates to class) 
 

In order to fine-tune the system, we adjusted the 

hyperparameters. To get a more accurate reading, we 

lowered the minimum number of estimators to 300 and the 

number of leaf samples to 1. Roughly 83% of predictions 

were correct. Furthermore, we use random cross-validation 

to check for over- and under-fitting in our model. As shown 

by 20-fold random cross-validation, our model is neither 

under fitting nor over fitting the data, as we reach an 

accuracy of 92% and 99%, respectively, using 1 and 3 leaf 

samples, respectively. Moreover, we determined which 

characteristics were most important to the categorization 

process. (Figs. 5, 6, 7, and 8; Tabs. 3 and 4). 

Table 3: Performance evaluation on preprocessed malware data 

(No of leaf samples is 3) 
 

Classes Precision Recall F1-score Support 

C1 0.94 0.92 0.93 281 

C2 0.87 0.84 0.85 159 

C3 1.00 0.64 0.78 22 

C4 1.00 0.55 0.71 55 

C5 0.96 0.73 0.83 109 

C6 0.87 0.96 0.91 178 

C7 0.99 0.89 0.94 111 

C8 0.92 0.85 0.89 178 

C9 0.99 0.97 0.98 86 

C10 1.00 1.00 1.00 300 

C11 0.95 0.98 0.96 252 

C12 0.77 0.99 0.87 272 

Accuracy 0.92 2003 

 

 
 

Fig 5: Confusion matrix on preprocessed malware data (No of leaf 

samples is 3) 
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The value for the pe-resource-langs property, neutral, is 

second only in importance to the connection point attribute. 

Form the results above on preprocessing data we observe 

the accuracy is 92% on data supported 2003 for 12 classes 

using number of leaf samples is 3 shown in Table 3. 

 

 
 

Fig 6: Classification performance on different classes on malware data preprocessed (No. of leaf samples is 3) 
 

 
 

Fig 7: Confusion matrix on preprocessed malware data (No. of leaf samples is 1) 

 
Table 4: Performance evaluation on preprocessed malware data (No. of leaf samples is 1) 

 

Classes Precision Recall F1-score Support 

C1 1.00 0.99 1.00 285 

C2 1.00 1.00 0.99 157 

C3 0.99 0.99 1.00 23 

C4 1.00 1.00 1.00 59 

C5 0.99 1.00 1.00 111 

C6 1.00 1.00 0.99 178 

C7 1.00 1.00 0.99 119 

C8 1.00 0.99 1.00 173 

C9 0.99 1.00 1.00 96 

C10 1.00 1.00 0.99 279 

C11 1.00 0.99 1.00 242 

C12 1.00 1.00 0.99 281 

Accuracy 0.99 2003 

 

 
 

Fig 8: Classification performance on different classes on malware data preprocessed (No. of leaf samples is 1) 
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Form the results above on malware preprocessed data we 

achieved the accuracy is 99% on data supported 2003 for 12 

classes using number of leaf samples is 1 shown in Table 5. 

 

Algorithm for Imbalanced ICS Datasets 

Two ICS datasets, one from a gas pipeline system and one 

from a water treatment plant, are used to assess the 

effectiveness of the suggested technique. RF Classifiers and 

a few additional approaches from the literature were used to 

evaluate the outcomes. Accuracy, precision, recall, and f-

measures are only few of the assessment metrics 

summarized in Table 5. The dataset show that the proposed 

approach outperforms the state-of-the-art methods on all 

four measures, with the f-measure being particularly 

relevant in an unbalanced setting. 

 
Table 5: Performance evaluation the detection capabilities using 

swat dataset 
 

Model Accuracy Pre Recall F1-Score 

Proposed RF 98.67 0.97621 0.98618 0.97619 

[25] SVM - 0.93521 0.70152 0.80002 

[8] RNN - 0.92544 0.69699 0.80563 

[16] ID-CNN - 0.95985 0.80251 0.88521 

[32] TABOR 95.00 0.87233 0.79852 0.83655 

[30] AE - 0.89972 0.80787 0.84528 

 

Table 5 indicate that the proposed RF model with data 

pretreatment outperforms other approaches in performance 

assessment detection on the various datasets. Here we 

discuss how each contribution fared in the review process. 

In our initial contribution, we use three datasets collected 

from various critical infrastructure sites to assess the 

efficacy of the suggested RF technique. The suggested 

extended models achieved 10% better f1-score, accuracy, 

recall, and precision than various peer methods in the 

current literature and conventional classifiers. Not to 

mention the fact that we can now identify attacks in ICS and 

APT. 

With just three primary characteristics, 2862 malware 

samples, and two ICS datasets, the model performed quite 

well. Incorporating other characteristics, such entropy, the 

number of sections, or more malware samples, might 

improve the model's accuracy. Due to time constraints and a 

shortage of APT malware datasets, we extracted fewer 

characteristics. As an added downside, the time and effort 

spent on data preparation was quite extensive. More data 

may be added to the collection in the future by extracting 

more properties from the VirusTotal report. Use of neural 

networks for categorization and dynamic analysis in the 

Cuckoo sandbox are also viable options. 

 

Conclusion 

Reliable and secure operations of critical infrastructures are 

crucial to national security, since these systems constitute 

the backbone of contemporary civilization and include a 

wide range of cyber and physical systems. As a first 

contribution, we aimed to develop a cyber-attack detection 

technique (RF) for ICS that relies on generalized ensembles 

of deep learning models. A deep representation-learning 

model is used in the proposed method to create new 

balanced representations from the original unbalanced 

dataset. After the new representations have been created, a 

DNN and DT classifier-based ensemble deep learning 

technique is utilized to identify cyber-attacks. Two 

independent ICS datasets culled from operational facilities 

in the critical infrastructure sector are used to validate the 

proposed model's performance. Both the Gas Pipeline 

dataset and the Secure Water Treatment dataset saw 

improvements in accuracy thanks to our suggested method, 

with 95.00 percent for the former and 98.67 percent for the 

latter. The results were compared to those obtained by using 

more conventional classifiers like DNN and ADA, as well 

as by using other methods given by experts in the field. In 

each of the four measures used to compare the methods, the 

suggested methodology came out on top. 

The accuracy and f1-score outcomes of our suggested 

method were 10% higher than those of traditional 

classifiers. Our generalized model may be easily applied to 

larger scale models, such as the water treatment system, and 

used in a variety of infrastructure facilities with few 

modifications to preexisting models. Additionally, 10-fold 

cross validation was used to assess the process and 

component models' correctness and f1-score by testing each 

data point just once and removing the possibility of bias 

from utilizing duplicate data points. 
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