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Abstract 
Lightweight deep learning data and algorithms center technology have recently advanced to the point 

where multiple inferences of models tasks can be executed simultaneously on limited data center 

resources. This allows us to work together towards a common goal instead of focusing on achieving 

high quality in each individual task. On the other hand, real-time applications are never good with 

multi-model inferences because of the high total operating latency. For multi-model deployment, 

algorithms should be fine-tuned to reduce latency as much as possible without jeopardizing safety-

critical scenarios. In this study, we employ an open neural networks exchange (ONNX) execution 

engine to investigate model inference and develop a real-time job scheduling technique for deploying 

multiple models. Afterwards, a container-based application deployment approach is suggested, and 

inference jobs are allocated to various containers according to the scheduling techniques. The 

suggested technique may drastically cut down on total running delay in real-time applications, 

according to the experimental findings. 
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1. Introduction 

Geographically dispersed data centers linked by the Internet hold vast amounts of data. A 

large portion of cloud service providers' operating budgets go into covering the energy costs 

of maintaining the data storage servers and the costs of transporting data between data 

centers so that all of the many copies of data may be updated. Under the limits of user access 

latency requirements, very little research has placed data replicates in data centers by 

simultaneously considering power usage and network transit [1]. Distributed storage systems 

are notoriously prone to failure, which has led to the widespread use of majority quorum-

based consistency of data algorithms [2]. The constant generation of massive amounts of data 

by enterprises necessitating analysis across geographically distributed sites is a direct result 

of the globalization of services. Conventional wisdom holds that, for reasons like low latency 

data processing and the lack of wide-area bandwidth, it is either not practical or wasteful to 

move all information to a single cluster. The use of geographically dispersed datacenters for 

processing large data has been more common over the past decade [3]. Online data-intensive 

services, of which web searches are a subset, are housed in data centers. Hundreds of 

thousand of index nodes aid the nodes in a distributed architecture search engine. In a 

partition-aggregate method, these nodes provide search results to an aggregator over 

numerous interdependent retrieval steps. But it's not simple to optimize these systems for 

low power consumption, fast reaction, and good search quality [4]. Vehicular networks are 

vital to intelligent transportation systems because they provide a reliable link between cars 

and users, which is becoming more important due to the rising demand for mobile 

multimedia services and the fast development of related technology. On the other hand, there 

may be a lot of idle computing, communication, and storage capacity in a large number of 

parked cars [5]. Distributed storage systems often use erasure codes as a means of data loss 

prevention due to their space-optimal data redundancy. There has been no effort on 

delivering differentiated latency across several tenants that may have varying latency needs, 

despite recent advancements on measuring average service delay when erasure codes are 

applied [6]. Now more than ever, in the age of cloud computing, there is a pressing need to 

make cloud applications more reliable and elastic. The conventional wisdom is that these 

objectives may be best accomplished by separating the lifecycle of critical application states  
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from those of specific application instances; in this 

approach, data and states are often stored in and retrieved 

from cloud databases that are physically located near the 

application code. There are stringent latency constraints on 

these storage options for state access due to the application's 

high performance needs. In order to guarantee localization 

of data for all functions, cloud database instance are 

deployed on various servers. But since certain states are 

shared and because application workload patterns are 

inherently unpredictable, data access across hosts inside the 

data center (Or between data centers if the application 

demands it) is unavoidable [7]. 

Rather of focusing on completing each job to a high 

standard independently, the activities often have a common 

purpose and work together to achieve it. Reducing total 

running latency to fulfill safety requirements is, hence, a 

major concern in autonomous systems. 

 

2. Related Work 

Assuming all data has K copies, the goal of minimizing 

operational cost while meeting user accessibility latency 

requirements is addressed in [8]. Authors provide a practical 

approach that is both operational and latency-aware. Least 

Cost Data Placement (LCDP) is a method that, based on 

data access rates, divides data into many groups and then, 

greedily, chooses K data centers that incur the lowest cost 

per data group. They demonstrate that the LCDP method 

approaches the data placement issue with an accuracy of 

\(\frac{1}{2} \ln |\mathrm {U}|\), where \(|\mathrm {U}|\) is 

the total amount of users. The results of their simulations 

show that the suggested method may successfully lower 

data center operating costs, power consumption costs, and 

network transport costs. 

The MeteorShower architecture was suggested in [9] by 

researchers; it facilitates sequentially consistent key-value 

storage across several data centers and is fault-tolerant for 

read/write operations. The fact that the majority of read 

operations are carried out locally inside a single data center 

is a notable feature. Read latency is reduced from dozens of 

milliseconds to tens of millisecond as a consequence of this. 

To supplement techniques based on a majority quorum, 

MeteorShower has a data consistency algorithm. Thus, it 

retains tolerance for faults, balanced load, and all the other 

desired qualities of majority quorums. A MeteorShower 

solution built on top of Cassandra is tested and deployed 

across several Google Cloud Platform data centers. Despite 

replicas being stored in different data centers, the 

MeteorShower framework has been shown to reliably 

handle read requests without incurring communication 

delays. As a consequence, read queries now have latency in 

the tens of milliseconds rather than the hundreds of 

millisecond that was previously guaranteed, but write 

requests still have the same latency and fault tolerance. 

Therefore, MeteorShower is most effective on read-

intensive workloads. 

To overcome these obstacles, the authors of the 

aforementioned research propose a two-phase Map-Reduce 

strategy that takes into account datacenter-to-datacenter cost 

balancing between bandwidth, storage, processing, 

migration, and latency. Through simultaneous reduction of 

all five cost factors, they formulate a combined stochastic 

integer nonlinear optimization problem, which streamlines 

the optimization of data transit, resource provisioning, with 

reducer selection. Additional work is put into designing an 

effective online algorithm that can decrease the time-

averaged operating cost over the long run. 

Learn more about how content delivery networks that 

employ a central data center to service several customers via 

a common wireless medium fare in terms of energy 

efficiency in [11]. With a focus on applications that can 

withstand delay, researchers provide an optimization and 

design approach to precoding that minimizes overall energy 

usage while ensuring a certain level of service. An energy-

buffering period trade-off is derived in a closed-form 

equation for single-user scenarios, demonstrating the 

influence of the major system features on the total energy 

consumption. Then, for cases involving numerous users, 

they define an energy minimization issue using a precoding 

scheme based on minimal mean square error. They provide 

an iterative approach that approximates the non-convex 

constraint linearly in order to solve the issue suboptimally, 

allowing us to get around the non-convexity of the defined 

problem. At last, numerical results are given to show how 

successful the solution is. 

In order to identify the source of the high tail delay problem 

in cloud CDNs, the authors of the aforementioned article [12] 

examine a massive dataset acquired from a well-known 

cloud CDN supplier and compare it to benchmark data 

collected on Amazon's Web Services and Microsoft Azure. 

The efficacy of cloud CDNs can be drastically diminished 

due to this issue. One major idea is to reduce tail latency by 

sending requests in parallel to different clouds in cloud 

CDNs. Nevertheless, in their specific case, application 

developers frequently have limited funds for cloud services, 

so there are still unanswered questions about how to 

efficiently decide how many pieces to download from all of 

them as well as when to download them. Here, they 

introduce TailCutter, a framework for scheduling workloads 

with the stated goal of minimizing tail latency within the 

budgetary restrictions imposed by application providers. To 

solve the problem of tail delay minimization in cloud CDNs, 

they create an algorithm called RHC-based MTMA, which 

stands for receding horizon control driven maximal tail 

reduction. Many data centers on AWS and Azure are going 

to get TailCutter. Extensive testing using a large-scale 

actual-world traces (gathered from a major ISP) 

demonstrates that TailCutter may minimize user-perceived 

delay through up to 58.9% of the 100th percentile, when 

compared to competing solutions within the same budget. 

Find out two crucial features that could influence the 

system's performance in [13] by conducting experiments: (1) 

the energy usage and response time are significantly 

affected by a small number of queries that take a long time 

to process; (2) the ISN's quality contribution is unrelated to 

how long it takes to answer a query. Their findings inform 

the proposal of TailCut, an algorithm that allows ISN-

aggregator coordination to reduce energy usage while 

maintaining quality and latency requirements by carefully 

discarding lengthy query executions. In addition to meeting 

the requirements for tail latency and quality, their testing 

findings demonstrate that TailCut can yield power savings 

of up to 39%. 

With the vehicular edge computing cache strategy suggested 

in [14], content providers work together to store frequently 

accessed files in the storage of parked automobiles spread 

across several parking lots. The suggested VEC caching 

architecture takes data center capabilities all the way out to 

the network's periphery. Consequently, overall transmission 
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delay may be drastically cut in half and duplicate 

transmissions from distant servers can be eliminated. Here, 

they provide an iterative ascending pricing auction–based 

content placement method that aims to reduce average 

latency for mobile consumers. Comparing the suggested 

caching technique to the most popular and commonly used 

one, numerical findings reveal a performance boost of up to 

24% with regard to of average latency. 

This research explores two scheduling policies-weighted 

queue and priority queue-to provide and optimize 

differential latency in erasure-coded storage. It then 

provides a unique framework for this purpose [15]. Using 

random file placement as well as service time distributions, 

they measure service latency for various tenant classes for 

both policies. In order to reduce differential delay across 

three distinct choice spaces, they create an optimization 

framework: 1) Scheduling requests; 2) data insertion; and 3) 

managing resources. The suggested optimization is solved 

using efficient algorithms that use bipartite matching as well 

as convex optimization methods. Elastic service-level 

agreements are made possible by their technology, allowing 

them to satisfy the needs of diverse applications. They go on 

to demonstrate their approach in action by implementing 

both queuing models in an open-source cloud storage 

deployment. This configuration mimics three data centers 

spread out across different locations by reserving 

bandwidth. In erasure-coded storage systems, experimental 

findings provide light on service differentiation as well as 

elastic quality of service by validating their conceptual 

delay analysis as well as demonstrating a substantial joint 

decrease in latency for various file classes. 

 

3. Proposed Work  

Here we present a common situation when the suggested 

approach might be useful. Following that, the two types of 

scheduling techniques that were created are shown. The goal 

is to reduce the average data fusion delay as much as 

possible while operating several model inference workloads 

on a single Data Center. 

 

3.1 DCN Model  

Figure 1 depicts the storage system's architecture. In a 

distributed storage system, a group of storage server or 

nodes N (where |N|= N) is set up. Storage servers receive all 

data elements. There are computational capabilities for data 

analytics included into each storage server as well. It may be 

necessary to transfer data across storage servers for 

analytical applications that include several data items. A 

DCN connects all of the servers. We don't depend on any 

particular DCN architecture to provide a generic data 

organization solution. Keep in mind that the end-to-end data 

flow measurements are the only foundation of our design. 

From the tree-based Clos with Fat-tree to the recursive 

DCell with BCube, as well as the adaptable Helios and 

cThrough, our approach is capable of supporting any 

conceivable DCN topology.  

 

3.2 Scheduling Models  

The first allocation strategy we have designed is the Optimal 

Solution Selection Method. By the method, the optimal 

allocation solution is chosen each time, so that the overall 

latency can be guaranteed to be minimal. The method is 

described in detail as follows: 

The first thing to notice is that one embedded edge devices 

has  sensor inputs. 

 

   (1) 

 

s_i is the i-th sensor input, and n is the sensor count. 

On top of that, every edge device has  apps installed. 

 

   (2) 

 

where  denotes the  th App. 

For  various inputs, the processing and inference delay 

needs for each input job. 

 

   (3) 

 

where  displays the time it takes for s_i to make an 

inference. The time it takes for a particular device to finish a 

single inference job is a constant. 

Since the  There are! Assignment options since tasks 

needs to be given to n apps. Equation (4) displays the 

assignment matrix. 

 

    (4) 

 

where  denotes the  th distribution policy. 

 

   (5) 

 

Equation (6) shows that various applications will be allotted 

the n jobs in each request round. First, we may test out all of 

the possible assignment options and get the  through 

Equation (6). 

 

 (6) 

 

is the total amount of time that App  has spent running 

according to the distribution policy c_k 

Then, using Equation (7), we can get the total latency of all 

the apps for a single option. Using Equation (), we can 

determine the data fusing latency for each assignment 

option, which is dependent on the app with the largest delay. 

 

   (7) 

 

in which  stands for the total amount of time spent 

running in the rth round of requests under the kth allocation 

policy. 

Equation (8) allows us to choose the assignment c_x with 

the lowest latency, which in turn minimizes the running 

latency. 
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   (8) 

 

The assignment option c_x may be used to divide up all n 

jobs across n applications, and Equation (9) can be used to 

compute the cumulative latency of each app. 

 

   (9) 

 

    (10) 

 

T_(a_i) (r) is the total amount of time that has passed since 

the i-th application ran during the r-th request cycle. 

Here, the intricacy of the time required is: 

 

     (11) 

 

The complexity of the space is: 

 

     (12) 

 

Obtaining the best solution and minimizing running delay of 

multi-model inference jobs are guaranteed by this technique, 

since it compares all allocation options and picks the one 

resulting in the least amount of delay. One drawback of this 

approach is the time it takes to execute allocation strategy-

making while running several model inferences at once. To 

find a happy medium between allocation strategy runtime 

and multi-model inference job runtime. 

To start, the  inputs to sensors are arranged in descending 

order of importance: 

 

(13) 

 

Every iteration involves sorting the total operating latency 

of  applications from smallest to largest: 

 

(14) 

 

At last, the  th job in the  is allocated to the  th app 

in the : 

 

  (15) 

 

Here, the intricacy of the time required is: 

 

    (16) 

 

The space complexity is: 

 

     (17) 

 

The strategy's mathematical modeling is shown in Figure 1. 

At each allocation, the application that is now idle gets the 

job with the longest execution time, as indicated in the 

figure. This process continues until the application that is 

currently active gets the work with the least execution time. 

By using this method, the total running latency may be 

significantly decreased. 

 

 
 

Fig 1: MultiData Center Model 

 

3.3 Latency Minimization using DRL  

Cloud companies run several datacenters worldwide to host 

their cloud-based services, due to regulatory restrictions and 

the need to minimize latency to end users. Request 

allocation, the process of allocating user requests to 

datacenters that offer the best combination of characteristics 

valued by cloud providers (Such as low bandwidth cost) and 

end-users (Such as low latency), is a new challenge that is 

arising under such geo distributed architecture. But previous 

approaches to request allocation have major flaws: they 

either optimize benefits for providers or users exclusively, 

or they optimize benefits for both providers and users while 

ignoring important but practical considerations, such as 

users' diverse latency requirements and datacenters' diverse 

per-unit bandwidth costs.  

This proposal proposes to use DeepRL agents in lieu of 

domain-specific rule-based heuristics. As its topology 

changes, the DeepRL agent takes action-choosing which 

connections to activate-receives rewards-depending on link 

use and flow duration-and updates its policy-through state-

action mapping. To be more precise,  

 State space: the structure of the network (shown as an 

sparse matrix with entries representing the connections 

that are active). 

 Action space: various permutations of links (shown as a 

vectors where each element denotes the likelihood of 

the matching link to be collected). 

 Reward: reduce average flow completion time (FCT) 

and optimize link usage; that is, 

 

    (18) 

 

https://www.computersciencejournals.com/ijcai


International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai 

~ 43 ~ 

where F stands for all finished flows and l for all utilized 

linkages represented by f. The whole time of flow f is 

denoted by d_f, while the total amount of transferred bytes 

is represented by b_f.  

The agents that embody the data center's functionality are 

trained offline using a network simulator. A convolutional 

neural networks (CNN) is used by the learning model. The 

input state of the CNN is the network topology as well as 

traffic matrix, and the output state is the policy that specifies 

which connections in the topology should be activated. To 

calculate the final probability vectors (policy vector), the 

convolutional layers first collect spatial information from 

the network architecture and traffic matrices. Then, they 

combine these data with those from fully connected layers 

with softmax. With a decent number of episodes with the 

capacity to train a solution near to the optimum one across 

multiple data center topologies, such an ML-based approach 

established its usefulness. 

Figure 1 shows the overall design of. Maintenance of the Q-

function encapsulates the essence of Q-learning-based job 

scheduling: 

 

 (19) 

 

Through intense data flows, the storage system's dynamic 

information (State) may be learnt, allowing one to 

understand which information item should be stored on the 

appropriate node (Action A) in order to decrease associated 

service latencies. After that, the analysis and read/write 

latencies that were discovered are used as the Reward  

that the recurrent model may be trained. So, DataBot+ is 

able to provide more effective data placement policies in the 

long run. 

To be more precise, the data arrangement policy and the 

present state determine the storage sites for data item m 

before its writing into the storage device at time t . 

After that, the data m is moved to that location by executing 

the action a, . All read and analysis operations 

throughout t and t^', as well as the delay of the last write at 

t, may be monitored until the data point m is updated at t^'. 

The right away reward r_t of the action an is calculated as 

the weighted average of the read/write as well as analytical 

latencies. Following the action to update at t^', the entire 

system advances to a different state s^'. As stated in, the 

present reward r_t at the time t continues to influence the 

times to follow. A function that maximizes the expectation 

of the long-term reward is the optimum Q-value function 

Q^* (s,a). 

 

(20) 

 

where  acts as a price reduction  is 

possible to do using the Bellman equation in the following 

way: 

 

 (21) 

 

Fig. 2 shows that in a dynamic surroundings, several 

variables, including request patterns and network 

circumstances, may impact future rewards. Convergence to 

the best solution is not guaranteed by standard RL 

approaches based on temporal differences. This problem is 

addressed by using the NN to efficiently and accurately 

estimate the Q-function. 

 

4. Results & Discussion 

Here we show the benefits of our methods with regard to 

latency and provide a detailed description of the 

experimental setting. Here we lay up the groundwork for 

comparing performance by introducing the metrics and 

benchmarks. After that, we'll test our algorithm extensively 

to see how it performs and what features it has. 

In our model, a cloud provider with forty datacenters is 

considered. We remove the unit from every setting in our 

simulation for simplicity's sake. In particular, we assigned 

1000 as the maximum bandwidth capacity for each 

datacenter's upstream connection. The range of values for 

each datacenter's per-unit bandwidth cost is chosen at 

random from [0.03, 0.3]. Assuming a delay requirement of 

50–500 for each request, our simulation takes into account 

1000, 1500, as well as 2000 concurrent user inquiries, 

respectively. Furthermore, the bandwidth required to 

process each request is randomly selected from the interval 
[5, 15]. Each datacenter's reaction time, Pi(•), is defined as the 

remaining capacity times a coefficient, first chosen at 

random from 1 to 100. Here are two ways that we compared 

using our algorithm. To start, there's the latency-only 

method, which avariciously sends all requests to the 

datacenter having the lowest total delay. The second kind is 

an algorithm that prioritizes minimizing bandwidth costs; it 

routes all requests to the datacenter that offers the best deal. 

For simplicity's sake, we'll refer to our proposed method as 

"LC," different cost-only and latency-only variants as "LO" 

and "CO," respectively. 

 

4.1 Single Data Center Scenario 

The effect of latency requirement is then assessed. Just so 

we're clear, we choose the latency requirements lj at random 

from the intervals [50, 100], [50, 250], and [50, 500], 

respectively. 
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Fig 2: Latency Analysis for Single DCN 
 

4.2 Multiple Data Centers Scenario 

The effect of latency requirement is then assessed. Just so 

we're clear, we choose the latency requirements lj at random 

from the intervals [50, 100], [50, 250], and [50, 500], 

respectively. 

 

 
 

Fig 3: Latency Analysis for Multiple DCN 
 

The delay that users encounter greatly affects their queries. 

Consequently, the total delay fulfillment of user requests is 

also assessed in this work. According to Fig.2, Fig 3, LC 

dosage may completely satisfy the latency needs of all 

requests, even if it cannot lower latency on its own. The 

frequency of user requests that meet the delay criterion for 

various algorithm types is shown in Table 2. From this, we 

may deduce that CO is unable to meet the latency demands 

of any user request, while LO and LC are. The rationale for 

this is that CO completely disregards the latency needs of 

user requests in favor of optimizing the bandwidth cost. 

 

5. Conclusion  

To ensure that end customers' latency needs are met while 

lowering the overall bandwidth cost for suppliers of cloud 

services, this article examines an emerging topic of how to 

allocate each user requests to an appropriate information 

center. To make it easier to solve, we first transform the 

integer programming issue with a continuous convex 

optimization issue. Next, we develop a random-sample 

request allocation procedure to guarantee that the original 

optimization problem's solution is viable, and we get the 

request allocation decision appropriately. A tight upper limit 

for the overall bandwidth cost may be obtained using our 

technique, as we have shown. Lastly, we do thorough 

simulations. When compared to more traditional methods, 

our suggested algorithm guarantees end users' latency needs 

at a lower cost to cloud service providers. 

 

6. Future Work  

This is a challenging task because automatically suggesting 

a single solution that satisfies the subjective preference of 

each stakeholder has remained an open problem for decades 
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