
~ 39 ~

International Journal of Computing and Artificial Intelligence 2020; 1(1): 39-45

E-ISSN: 2707-658X

P-ISSN: 2707-6571

IJCAI 2020; 1(1): 39-45

Received: 22-11-2019

Accepted: 28-12-2019

Manideep Yenugula

Kohls, Milpitas, California,

95035, USA

Raghunath Kodam

Apple, California, 95035, USA

David He

Apple, California, 95035, USA

Corresponding Author:

Manideep Yenugula

Kohls, Milpitas, California,

95035, USA

Multiple data centers intended for latency

minimization using artificial intelligence algorithms

Manideep Yenugula, Raghunath Kodam and David He

DOI: https://doi.org/10.33545/27076571.2020.v1.i1a.79

Abstract
Lightweight deep learning data and algorithms center technology have recently advanced to the point

where multiple inferences of models tasks can be executed simultaneously on limited data center

resources. This allows us to work together towards a common goal instead of focusing on achieving

high quality in each individual task. On the other hand, real-time applications are never good with

multi-model inferences because of the high total operating latency. For multi-model deployment,

algorithms should be fine-tuned to reduce latency as much as possible without jeopardizing safety-

critical scenarios. In this study, we employ an open neural networks exchange (ONNX) execution

engine to investigate model inference and develop a real-time job scheduling technique for deploying

multiple models. Afterwards, a container-based application deployment approach is suggested, and

inference jobs are allocated to various containers according to the scheduling techniques. The

suggested technique may drastically cut down on total running delay in real-time applications,

according to the experimental findings.

Keywords: Latency optimization, multi-model, task scheduling, autonomous driving, AI

1. Introduction

Geographically dispersed data centers linked by the Internet hold vast amounts of data. A

large portion of cloud service providers' operating budgets go into covering the energy costs

of maintaining the data storage servers and the costs of transporting data between data

centers so that all of the many copies of data may be updated. Under the limits of user access

latency requirements, very little research has placed data replicates in data centers by

simultaneously considering power usage and network transit [1]. Distributed storage systems

are notoriously prone to failure, which has led to the widespread use of majority quorum-

based consistency of data algorithms [2]. The constant generation of massive amounts of data

by enterprises necessitating analysis across geographically distributed sites is a direct result

of the globalization of services. Conventional wisdom holds that, for reasons like low latency

data processing and the lack of wide-area bandwidth, it is either not practical or wasteful to

move all information to a single cluster. The use of geographically dispersed datacenters for

processing large data has been more common over the past decade [3]. Online data-intensive

services, of which web searches are a subset, are housed in data centers. Hundreds of

thousand of index nodes aid the nodes in a distributed architecture search engine. In a

partition-aggregate method, these nodes provide search results to an aggregator over

numerous interdependent retrieval steps. But it's not simple to optimize these systems for

low power consumption, fast reaction, and good search quality [4]. Vehicular networks are

vital to intelligent transportation systems because they provide a reliable link between cars

and users, which is becoming more important due to the rising demand for mobile

multimedia services and the fast development of related technology. On the other hand, there

may be a lot of idle computing, communication, and storage capacity in a large number of

parked cars [5]. Distributed storage systems often use erasure codes as a means of data loss

prevention due to their space-optimal data redundancy. There has been no effort on

delivering differentiated latency across several tenants that may have varying latency needs,

despite recent advancements on measuring average service delay when erasure codes are

applied [6]. Now more than ever, in the age of cloud computing, there is a pressing need to

make cloud applications more reliable and elastic. The conventional wisdom is that these

objectives may be best accomplished by separating the lifecycle of critical application states

https://doi.org/10.33545/27076571.2020.v1.i1a.79

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 40 ~

from those of specific application instances; in this

approach, data and states are often stored in and retrieved

from cloud databases that are physically located near the

application code. There are stringent latency constraints on

these storage options for state access due to the application's

high performance needs. In order to guarantee localization

of data for all functions, cloud database instance are

deployed on various servers. But since certain states are

shared and because application workload patterns are

inherently unpredictable, data access across hosts inside the

data center (Or between data centers if the application

demands it) is unavoidable [7].

Rather of focusing on completing each job to a high

standard independently, the activities often have a common

purpose and work together to achieve it. Reducing total

running latency to fulfill safety requirements is, hence, a

major concern in autonomous systems.

2. Related Work

Assuming all data has K copies, the goal of minimizing

operational cost while meeting user accessibility latency

requirements is addressed in [8]. Authors provide a practical

approach that is both operational and latency-aware. Least

Cost Data Placement (LCDP) is a method that, based on

data access rates, divides data into many groups and then,

greedily, chooses K data centers that incur the lowest cost

per data group. They demonstrate that the LCDP method

approaches the data placement issue with an accuracy of

\(\frac{1}{2} \ln |\mathrm {U}|\), where \(|\mathrm {U}|\) is

the total amount of users. The results of their simulations

show that the suggested method may successfully lower

data center operating costs, power consumption costs, and

network transport costs.

The MeteorShower architecture was suggested in [9] by

researchers; it facilitates sequentially consistent key-value

storage across several data centers and is fault-tolerant for

read/write operations. The fact that the majority of read

operations are carried out locally inside a single data center

is a notable feature. Read latency is reduced from dozens of

milliseconds to tens of millisecond as a consequence of this.

To supplement techniques based on a majority quorum,

MeteorShower has a data consistency algorithm. Thus, it

retains tolerance for faults, balanced load, and all the other

desired qualities of majority quorums. A MeteorShower

solution built on top of Cassandra is tested and deployed

across several Google Cloud Platform data centers. Despite

replicas being stored in different data centers, the

MeteorShower framework has been shown to reliably

handle read requests without incurring communication

delays. As a consequence, read queries now have latency in

the tens of milliseconds rather than the hundreds of

millisecond that was previously guaranteed, but write

requests still have the same latency and fault tolerance.

Therefore, MeteorShower is most effective on read-

intensive workloads.

To overcome these obstacles, the authors of the

aforementioned research propose a two-phase Map-Reduce

strategy that takes into account datacenter-to-datacenter cost

balancing between bandwidth, storage, processing,

migration, and latency. Through simultaneous reduction of

all five cost factors, they formulate a combined stochastic

integer nonlinear optimization problem, which streamlines

the optimization of data transit, resource provisioning, with

reducer selection. Additional work is put into designing an

effective online algorithm that can decrease the time-

averaged operating cost over the long run.

Learn more about how content delivery networks that

employ a central data center to service several customers via

a common wireless medium fare in terms of energy

efficiency in [11]. With a focus on applications that can

withstand delay, researchers provide an optimization and

design approach to precoding that minimizes overall energy

usage while ensuring a certain level of service. An energy-

buffering period trade-off is derived in a closed-form

equation for single-user scenarios, demonstrating the

influence of the major system features on the total energy

consumption. Then, for cases involving numerous users,

they define an energy minimization issue using a precoding

scheme based on minimal mean square error. They provide

an iterative approach that approximates the non-convex

constraint linearly in order to solve the issue suboptimally,

allowing us to get around the non-convexity of the defined

problem. At last, numerical results are given to show how

successful the solution is.

In order to identify the source of the high tail delay problem

in cloud CDNs, the authors of the aforementioned article [12]

examine a massive dataset acquired from a well-known

cloud CDN supplier and compare it to benchmark data

collected on Amazon's Web Services and Microsoft Azure.

The efficacy of cloud CDNs can be drastically diminished

due to this issue. One major idea is to reduce tail latency by

sending requests in parallel to different clouds in cloud

CDNs. Nevertheless, in their specific case, application

developers frequently have limited funds for cloud services,

so there are still unanswered questions about how to

efficiently decide how many pieces to download from all of

them as well as when to download them. Here, they

introduce TailCutter, a framework for scheduling workloads

with the stated goal of minimizing tail latency within the

budgetary restrictions imposed by application providers. To

solve the problem of tail delay minimization in cloud CDNs,

they create an algorithm called RHC-based MTMA, which

stands for receding horizon control driven maximal tail

reduction. Many data centers on AWS and Azure are going

to get TailCutter. Extensive testing using a large-scale

actual-world traces (gathered from a major ISP)

demonstrates that TailCutter may minimize user-perceived

delay through up to 58.9% of the 100th percentile, when

compared to competing solutions within the same budget.

Find out two crucial features that could influence the

system's performance in [13] by conducting experiments: (1)

the energy usage and response time are significantly

affected by a small number of queries that take a long time

to process; (2) the ISN's quality contribution is unrelated to

how long it takes to answer a query. Their findings inform

the proposal of TailCut, an algorithm that allows ISN-

aggregator coordination to reduce energy usage while

maintaining quality and latency requirements by carefully

discarding lengthy query executions. In addition to meeting

the requirements for tail latency and quality, their testing

findings demonstrate that TailCut can yield power savings

of up to 39%.

With the vehicular edge computing cache strategy suggested

in [14], content providers work together to store frequently

accessed files in the storage of parked automobiles spread

across several parking lots. The suggested VEC caching

architecture takes data center capabilities all the way out to

the network's periphery. Consequently, overall transmission

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 41 ~

delay may be drastically cut in half and duplicate

transmissions from distant servers can be eliminated. Here,

they provide an iterative ascending pricing auction–based

content placement method that aims to reduce average

latency for mobile consumers. Comparing the suggested

caching technique to the most popular and commonly used

one, numerical findings reveal a performance boost of up to

24% with regard to of average latency.

This research explores two scheduling policies-weighted

queue and priority queue-to provide and optimize

differential latency in erasure-coded storage. It then

provides a unique framework for this purpose [15]. Using

random file placement as well as service time distributions,

they measure service latency for various tenant classes for

both policies. In order to reduce differential delay across

three distinct choice spaces, they create an optimization

framework: 1) Scheduling requests; 2) data insertion; and 3)

managing resources. The suggested optimization is solved

using efficient algorithms that use bipartite matching as well

as convex optimization methods. Elastic service-level

agreements are made possible by their technology, allowing

them to satisfy the needs of diverse applications. They go on

to demonstrate their approach in action by implementing

both queuing models in an open-source cloud storage

deployment. This configuration mimics three data centers

spread out across different locations by reserving

bandwidth. In erasure-coded storage systems, experimental

findings provide light on service differentiation as well as

elastic quality of service by validating their conceptual

delay analysis as well as demonstrating a substantial joint

decrease in latency for various file classes.

3. Proposed Work

Here we present a common situation when the suggested

approach might be useful. Following that, the two types of

scheduling techniques that were created are shown. The goal

is to reduce the average data fusion delay as much as

possible while operating several model inference workloads

on a single Data Center.

3.1 DCN Model

Figure 1 depicts the storage system's architecture. In a

distributed storage system, a group of storage server or

nodes N (where |N|= N) is set up. Storage servers receive all

data elements. There are computational capabilities for data

analytics included into each storage server as well. It may be

necessary to transfer data across storage servers for

analytical applications that include several data items. A

DCN connects all of the servers. We don't depend on any

particular DCN architecture to provide a generic data

organization solution. Keep in mind that the end-to-end data

flow measurements are the only foundation of our design.

From the tree-based Clos with Fat-tree to the recursive

DCell with BCube, as well as the adaptable Helios and

cThrough, our approach is capable of supporting any

conceivable DCN topology.

3.2 Scheduling Models

The first allocation strategy we have designed is the Optimal

Solution Selection Method. By the method, the optimal

allocation solution is chosen each time, so that the overall

latency can be guaranteed to be minimal. The method is

described in detail as follows:

The first thing to notice is that one embedded edge devices

has sensor inputs.

 (1)

s_i is the i-th sensor input, and n is the sensor count.

On top of that, every edge device has apps installed.

 (2)

where denotes the th App.

For various inputs, the processing and inference delay

needs for each input job.

 (3)

where displays the time it takes for s_i to make an

inference. The time it takes for a particular device to finish a

single inference job is a constant.

Since the There are! Assignment options since tasks

needs to be given to n apps. Equation (4) displays the

assignment matrix.

 (4)

where denotes the th distribution policy.

 (5)

Equation (6) shows that various applications will be allotted

the n jobs in each request round. First, we may test out all of

the possible assignment options and get the through

Equation (6).

 (6)

is the total amount of time that App has spent running

according to the distribution policy c_k

Then, using Equation (7), we can get the total latency of all

the apps for a single option. Using Equation (), we can

determine the data fusing latency for each assignment

option, which is dependent on the app with the largest delay.

 (7)

in which stands for the total amount of time spent

running in the rth round of requests under the kth allocation

policy.

Equation (8) allows us to choose the assignment c_x with

the lowest latency, which in turn minimizes the running

latency.

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 42 ~

 (8)

The assignment option c_x may be used to divide up all n

jobs across n applications, and Equation (9) can be used to

compute the cumulative latency of each app.

 (9)

 (10)

T_(a_i) (r) is the total amount of time that has passed since

the i-th application ran during the r-th request cycle.

Here, the intricacy of the time required is:

 (11)

The complexity of the space is:

 (12)

Obtaining the best solution and minimizing running delay of

multi-model inference jobs are guaranteed by this technique,

since it compares all allocation options and picks the one

resulting in the least amount of delay. One drawback of this

approach is the time it takes to execute allocation strategy-

making while running several model inferences at once. To

find a happy medium between allocation strategy runtime

and multi-model inference job runtime.

To start, the inputs to sensors are arranged in descending

order of importance:

(13)

Every iteration involves sorting the total operating latency

of applications from smallest to largest:

(14)

At last, the th job in the is allocated to the th app

in the :

 (15)

Here, the intricacy of the time required is:

 (16)

The space complexity is:

 (17)

The strategy's mathematical modeling is shown in Figure 1.

At each allocation, the application that is now idle gets the

job with the longest execution time, as indicated in the

figure. This process continues until the application that is

currently active gets the work with the least execution time.

By using this method, the total running latency may be

significantly decreased.

Fig 1: MultiData Center Model

3.3 Latency Minimization using DRL

Cloud companies run several datacenters worldwide to host

their cloud-based services, due to regulatory restrictions and

the need to minimize latency to end users. Request

allocation, the process of allocating user requests to

datacenters that offer the best combination of characteristics

valued by cloud providers (Such as low bandwidth cost) and

end-users (Such as low latency), is a new challenge that is

arising under such geo distributed architecture. But previous

approaches to request allocation have major flaws: they

either optimize benefits for providers or users exclusively,

or they optimize benefits for both providers and users while

ignoring important but practical considerations, such as

users' diverse latency requirements and datacenters' diverse

per-unit bandwidth costs.

This proposal proposes to use DeepRL agents in lieu of

domain-specific rule-based heuristics. As its topology

changes, the DeepRL agent takes action-choosing which

connections to activate-receives rewards-depending on link

use and flow duration-and updates its policy-through state-

action mapping. To be more precise,

 State space: the structure of the network (shown as an

sparse matrix with entries representing the connections

that are active).

 Action space: various permutations of links (shown as a

vectors where each element denotes the likelihood of

the matching link to be collected).

 Reward: reduce average flow completion time (FCT)

and optimize link usage; that is,

 (18)

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 43 ~

where F stands for all finished flows and l for all utilized

linkages represented by f. The whole time of flow f is

denoted by d_f, while the total amount of transferred bytes

is represented by b_f.

The agents that embody the data center's functionality are

trained offline using a network simulator. A convolutional

neural networks (CNN) is used by the learning model. The

input state of the CNN is the network topology as well as

traffic matrix, and the output state is the policy that specifies

which connections in the topology should be activated. To

calculate the final probability vectors (policy vector), the

convolutional layers first collect spatial information from

the network architecture and traffic matrices. Then, they

combine these data with those from fully connected layers

with softmax. With a decent number of episodes with the

capacity to train a solution near to the optimum one across

multiple data center topologies, such an ML-based approach

established its usefulness.

Figure 1 shows the overall design of. Maintenance of the Q-

function encapsulates the essence of Q-learning-based job

scheduling:

 (19)

Through intense data flows, the storage system's dynamic

information (State) may be learnt, allowing one to

understand which information item should be stored on the

appropriate node (Action A) in order to decrease associated

service latencies. After that, the analysis and read/write

latencies that were discovered are used as the Reward

that the recurrent model may be trained. So, DataBot+ is

able to provide more effective data placement policies in the

long run.

To be more precise, the data arrangement policy and the

present state determine the storage sites for data item m

before its writing into the storage device at time t .

After that, the data m is moved to that location by executing

the action a, . All read and analysis operations

throughout t and t^', as well as the delay of the last write at

t, may be monitored until the data point m is updated at t^'.

The right away reward r_t of the action an is calculated as

the weighted average of the read/write as well as analytical

latencies. Following the action to update at t^', the entire

system advances to a different state s^'. As stated in, the

present reward r_t at the time t continues to influence the

times to follow. A function that maximizes the expectation

of the long-term reward is the optimum Q-value function

Q^* (s,a).

(20)

where acts as a price reduction is

possible to do using the Bellman equation in the following

way:

 (21)

Fig. 2 shows that in a dynamic surroundings, several

variables, including request patterns and network

circumstances, may impact future rewards. Convergence to

the best solution is not guaranteed by standard RL

approaches based on temporal differences. This problem is

addressed by using the NN to efficiently and accurately

estimate the Q-function.

4. Results & Discussion

Here we show the benefits of our methods with regard to

latency and provide a detailed description of the

experimental setting. Here we lay up the groundwork for

comparing performance by introducing the metrics and

benchmarks. After that, we'll test our algorithm extensively

to see how it performs and what features it has.

In our model, a cloud provider with forty datacenters is

considered. We remove the unit from every setting in our

simulation for simplicity's sake. In particular, we assigned

1000 as the maximum bandwidth capacity for each

datacenter's upstream connection. The range of values for

each datacenter's per-unit bandwidth cost is chosen at

random from [0.03, 0.3]. Assuming a delay requirement of

50–500 for each request, our simulation takes into account

1000, 1500, as well as 2000 concurrent user inquiries,

respectively. Furthermore, the bandwidth required to

process each request is randomly selected from the interval
[5, 15]. Each datacenter's reaction time, Pi(•), is defined as the

remaining capacity times a coefficient, first chosen at

random from 1 to 100. Here are two ways that we compared

using our algorithm. To start, there's the latency-only

method, which avariciously sends all requests to the

datacenter having the lowest total delay. The second kind is

an algorithm that prioritizes minimizing bandwidth costs; it

routes all requests to the datacenter that offers the best deal.

For simplicity's sake, we'll refer to our proposed method as

"LC," different cost-only and latency-only variants as "LO"

and "CO," respectively.

4.1 Single Data Center Scenario

The effect of latency requirement is then assessed. Just so

we're clear, we choose the latency requirements lj at random

from the intervals [50, 100], [50, 250], and [50, 500],

respectively.

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 44 ~

Fig 2: Latency Analysis for Single DCN

4.2 Multiple Data Centers Scenario

The effect of latency requirement is then assessed. Just so

we're clear, we choose the latency requirements lj at random

from the intervals [50, 100], [50, 250], and [50, 500],

respectively.

Fig 3: Latency Analysis for Multiple DCN

The delay that users encounter greatly affects their queries.

Consequently, the total delay fulfillment of user requests is

also assessed in this work. According to Fig.2, Fig 3, LC

dosage may completely satisfy the latency needs of all

requests, even if it cannot lower latency on its own. The

frequency of user requests that meet the delay criterion for

various algorithm types is shown in Table 2. From this, we

may deduce that CO is unable to meet the latency demands

of any user request, while LO and LC are. The rationale for

this is that CO completely disregards the latency needs of

user requests in favor of optimizing the bandwidth cost.

5. Conclusion

To ensure that end customers' latency needs are met while

lowering the overall bandwidth cost for suppliers of cloud

services, this article examines an emerging topic of how to

allocate each user requests to an appropriate information

center. To make it easier to solve, we first transform the

integer programming issue with a continuous convex

optimization issue. Next, we develop a random-sample

request allocation procedure to guarantee that the original

optimization problem's solution is viable, and we get the

request allocation decision appropriately. A tight upper limit

for the overall bandwidth cost may be obtained using our

technique, as we have shown. Lastly, we do thorough

simulations. When compared to more traditional methods,

our suggested algorithm guarantees end users' latency needs

at a lower cost to cloud service providers.

6. Future Work

This is a challenging task because automatically suggesting

a single solution that satisfies the subjective preference of

each stakeholder has remained an open problem for decades

7. References

1. Liu Y, Yu FR, Li X, Ji H, Leung VC. Distributed

resource allocation and computation offloading in fog

and cloud networks with non-orthogonal multiple

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 45 ~

access. IEEE Transactions on Vehicular Technology.

2018;67:12137-12151.

2. Wang P, Yao C, Zheng Z, Sun G, Song L. Joint task

assignment, transmission, and computing resource

allocation in multilayer mobile edge computing

systems. IEEE Internet of Things Journal. 2019;6:2872-

2884.

3. Szalay M, Mátray P, Toka L. Minimizing state access

delay for cloud-native network functions. 2019 IEEE

8th International Conference on Cloud Networking

(CloudNet); c2019. p. 1-6.

4. Chappell SP, Beaton KH, Miller M, Lim DS,

Abercromby AF. BASALT 1: Extravehicular activity

science operations concepts under communication

latency and bandwidth constraints at Craters of the

Moon, Idaho.

5. Boviz D, Chen CS, Yang S. Cost-aware fronthaul rate

allocation to maximize benefit of multi-user reception

in C-RAN. 2017 IEEE Wireless Communications and

Networking Conference (WCNC); c2017. p. 1-6.

6. Mane TP, Kanade S. Congestion control mechanism for

TCP in data centered networks using multithreading.

7. Nagavalli M. Highlights some of the major issues in

cloud services and analysis of various data center

selection algorithms.

8. Fan Y, Wang C, Zhang B, Hu D, Wu W, Du DZ.

Latency-aware data placements for operational cost

minimization of distributed data centers. International

Conference on Database Systems for Advanced

Applications; c2020.

9. Liu Y, Guan X, Vlassov V, Haridi S. MeteorShower:

Minimizing request latency for majority quorum-based

data consistency algorithms in multiple data centers.

2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS); c2017. p. 57-

67.

10. Ramya SR, Prasad TV. Large scale data processing

from multiple data centers.

11. Vu TX, Lei L, Vuppala S, Chatzinotas S, Ottersten BE.

Energy-efficient design for latency-tolerant content

delivery networks. 2018 IEEE Wireless

Communications and Networking Conference

Workshops (WCNCW); c2018. p. 89-94.

12. Cui Y, Dai N, Lai Z, Li M, Li Z, Hu Y, et al.

TailCutter: Wisely cutting tail latency in cloud CDNs

under cost constraints. IEEE/ACM Transactions on

Networking. 2019;27:1612-1628.

13. Chou C, Bhuyan LN, Ren S. TailCut: Power reduction

under quality and latency constraints in distributed

search systems. 2017 IEEE 37th International

Conference on Distributed Computing Systems

(ICDCS); c2017. p. 1465-1475.

14. Wang S, Zhang Z, Yu R, Zhang Y. Low-latency

caching with auction game in vehicular edge

computing. 2017 IEEE/CIC International Conference

on Communications in China (ICCC); c2017. p. 1-6.

15. Xiang Y, Lan T, Aggarwal V, Chen YR. Optimizing

differentiated latency in multi-tenant, erasure-coded

storage. IEEE Transactions on Network and Service

Management. 2017;14:204-216.

https://www.computersciencejournals.com/ijcai

