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Abstract 
There are many applications and uses of recommendation systems. For any recommendation system, 
the user-to-item interactions are important which can also be seen as graphs. We are focusing on travel 
or place recommendations. There are very few works on travel or trip recommendation systems using 
Graph Neural Networks (GNN) leveraging user-to- item interactions. In this work, we have 
implemented travel or place recommendations using the LightGCN model and compared it with the 
implementation of the traditional non-graph-based collaborative filtering Matrix Factorization (MF) 
approach. We have then shown that the LightGCN model performs better for travel or place 
recommendations than the Matrix Factorization approach. We achieved very good results [203% 
increase in precision, a 167% increase in recall, and a 98.6% NDCG increase in metrics] using a graph 
based LightGCN model for travel or place recommendations compared to the Matrix Factorization 
approach. 
 
Keywords: Graph neural networks, LightGCN, neural graph collaborative filtering, collaborative 
filtering, embedding propagation 
 
Introduction 
In this section, we discuss the motivation for graph-based travel recommendations, our 
project goal, and the description of the article outline of the below sections. 
Many of us enjoy planning vacations or trips. However, according to Travel Daily News -
”66% of travelers say that planning a Trip is stressful and difficult”. Travel Agent Central 
says - “89 Percent Say Travel Is Enjoyable but Stressful and Difficult to Plan”. Omnibus 
survey says “Deciding on a location (50%)” 
This could be because, with the advancement of big data, multiple internet resources are 
available. Finding vacation destinations or travel packages among these huge travel-related 
online resources is very hard. 
Also, sometimes we might not be fully aware of all our choices to make fast decisions. Many 
travel service agencies are available in the market to guide us with trip recommendations. 
However, it is also hard for them to personalize based on individual customer preferences. 
This forms the primary motivation for any personalized travel recommendation systems. 
They reduce this huge information overload to only a small subset containing the choices or 
information the user or customer is most likely interested in. 
As recommendation systems are a broader area, we are focusing on travel-based 
recommendation models. In general, travel-based recommendation models are different from 
traditional recommendation systems. This is because travel products are not commonly 
browsed or purchased, unlike general products like music, movies, etc. Moreover, many 
factors such as price, destinations, etc., are also considered when purchasing travel products 
or making any travel plans. 
There are many travel recommendation systems and techniques available in the market. In 
general, recommendation systems use explicit or implicit feedback (could be a rating or 
feedback provided by the user to an item or travel product, or a place) or any information 
related to users' past experiences or interactions to suggest future recommendations. 
The interactions between users and items (travel products or places or destinations) could 
also be viewed as a graph. Numerous problems in the actual world can be represented using 
graphs. Any complex or simple data could be represented well, using graphs.
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They also consider the underlying relationship between the 
entities. Though there are many traditional-based travel 
recommendation models such as collaborative filtering, 
content-based filtering, convolution neural networks, matrix 
factorization, etc., they consider either user information or 
the travel product or item information to suggest 
recommendations. 
Whereas in graph-based recommendation systems, both the 
user-to-item interactions are considered for 
recommendations. Also, there are very few works on graph-
based recommendation systems for travel or place 
recommendation. This forms the motivation for our project. 
Our objective is to develop a travel or place 
recommendation solution that leverages the graph structure 
considering the underlying relationship between users and 
the items or place data relationships for making 
recommendations. 
In Section II, we have mentioned related work. In Section 
III the methodology of the proposed solution is described. 
The performance evaluation and results are described in 
section IV and section V respectively. The summary of the 
project and future works are mentioned in sections VI and 
VII followed by acknowledgments and references. 
 
Related Work 
In this section, we discuss the related works. We have 
broadly classified it into three categories non-graph-based 
travel recommendation systems, graph-based travel 
recommendation systems, and general graph-based 
recommendation systems. 
 
A. Non-graph-based travel recommendation systems 
Below we mentioned some of the important works in non- 
graph-based travel recommendation systems. 
Analysis of tourism recommendation systems works since 
2008, focusing on content-based suggestions, has been 
mentioned in the conference survey article proposed by 
Bentaleb et al (2021) [2]. The author discusses several 
methods for making traditional recommendations, such as 
content-based methods, collaborative filtering, and hybrid 
methods. 
Wang et al. (2020) [12] proposed a tourism collaborative 
system using deep learning methodology. They have used 
techniques such as Convolutional Neural Networks (CNN), 
Deep Neural Networks (DNN) to process user reviews and 
tourism service items. 
Kbaier et al (2017) [13] proposed a personalized hybrid 
recommendation system for tourists. They have used 
techniques and algorithms such as KNN Algorithm using 
Collaborative filtering, content-based techniques, and 
decision tree for demographic filtering. 
The above approaches use traditional methods for 
suggesting travel-based recommendations. Unlike our 
approach, these methods do not leverage graph structure. 
 
B. Graph-based travel recommendation systems 
Below we mentioned some of the important works in graph- 
based travel recommendation systems. 
Xin et al. (2021) [11] proposed an Out-of-Town 
Recommendation system. They have used techniques such 
as Graph Neural Networks, Neural Topic Model (NTM), 
and Matrix Factorization. In this work, they are suggesting 
recommendations based on the user’s travel behavior. 

Chen et al (2021) [4] proposed a Multi-view Graph Attention 
Network for the Travel Recommendation system. In this 
work, they are predicting the click probability of a user. 
The above works have not considered rating attribute, unlike 
our approach. As there are very few works in travel or place 
recommendation systems using Graph-based models, in our 
work we propose an implementation of a travel 
recommendation system using the LightGCN approach. 
In our work, we are implementing the LightGCN graph-
based model proposed by He et al (2020) [1] for travel or 
place recommendations. This model uses travel or trip-
related datasets (Yelp reviews, Indonesia tourism 
destination dataset) with users and places as nodes and user 
ratings as the weight to edges between the nodes. It uses 
rating as a feedback metric to suggest travel places or 
destinations or business places to users. 
 
C. General Graph-based recommendation systems 
Here we discuss general graph-based recommendation 
systems (not related to travel) A graph convolution matrix 
completion for recommender systems was proposed by Berg 
et al. (2017) [10] considering the link prediction on graphs 
using user data, movie ratings, and reviews (movies 
dataset). On the bipartite interaction graph, they have 
considered a graph auto-encoder architecture using 
differentiable message passing. 
Wang et al (2019) [14] proposed the Neural Graph 
Collaborative filtering (NGCF) model. This work discusses 
the application of GCN (Graph neural network) concepts for 
recommendations. They use GCN features such as Feature 
Transformation, Neighborhood Aggregation, and Non-
linearity activation function for calculating the user and item 
embeddings for predicting recommendations. 
Zhang M, and Chen Y proposed Inductive matrix 
completion (IGMC) based on graph neural networks (2019) 
[15]. This work addresses the issues of the Rianne van den 
Berg et al [10] paper for Matrix completion. Here the 
generalization of the learned embeddings is extended to 
unseen data. They have considered movies dataset. 
 
Methodology 
In this section, we discuss the LightGCN model, its 
architecture, and loss and optimization functions. 
The LightGCN model is proposed by He, Xiangnan, et al [1]. 
In this paper, a thorough ablation analysis has been 
performed on Graph Convolution Neural Network (GCN) 
model Neural Graph collaborative filtering (NGCF) model 
proposed for recommendations. 
In the NGCF model for graph-based recommendations (a 
variant of GCN) the concepts from the GCN such as feature 
transformation and linearity activation function are directly 
taken into consideration without much understanding of 
why these features were considered for recommendations. 
In general, they are mainly useful for node classification-
related tasks for graphs. The GCN for recommendations has 
experimented in the NGCF [14] model. This work is taken as 
the basis for the LightGCN model. 
From the analysis of ablation studies performed on the 
earlier works for recommendation systems in the Graph 
Neural Networks (GNN) NGCF model, it has been found 
that two operations, feature transformation, and nonlinearity 
activation function will not contribute much to the 
performance of the recommendation system. Moreover, it 
has been observed that adding these functionalities will 
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reduce performance and will make the training of the system 
more complex. 
Removing these functions has shown significant 
improvement in the performance of the recommendation 
model using Graph Neural Networks. This model is called 
LightGCN. The main intuition behind removing these 

functionalities is that we merely consider the user and item 
as identification factors (node IDs) without any rich features 
for a user-item interaction graph. Performing non-linear 
feature transformation for several message-passing layers 
will not add any benefit to the performance of the system. 

 
A. LightGCN Architecture 

 

 
 

Fig 1: LightGCN architecture 
 

The LightGCN model focuses on “neighborhood 
aggregation”. This model leverages the salient structure of 
the graph for updating the node embeddings. In general 
user-item interaction, graphs are used for recommendations 
in graph models. 
For providing recommendations of items or products to the 
user in the LightGCN model the initial user and item 
embeddings are randomly initialized. In this model, the 
initial user and item embeddings are the only learnable 
parameters. These initial embeddings are linearly 
propagated on the user-item interaction graph. This process 
is repeated for several layers like any neural network model. 
Mean of weighted summation of embeddings at every layer 
is calculated to obtain the final embeddings which would be 
used for loss metrics and backpropagation to update the 
initial embeddings (weights). These updated initial 
embeddings of users and items are used to calculate the 
similarity (dot product of initial user and item embeddings) 
to suggest items to a user. 
 
B. Mathematical equations 
Neighborhood aggregation (updating of items and user’s 
embeddings) 
 

  (Initial user, item embeddings) (1) 
 
Graph convolution operation (neighborhood aggregation) 
 

  (2) 
 
Nu refers to all the items that interacted with a user u (degree 
of the user) Ni refers to all the users that interacted with an 
item I (degree of the item) 
Final embeddings (average weighted summation of 
embeddings at each layer) 
 

  (3) 
 
Prediction (similarity between users and items) In matrix 
form, 
 

 (4) 
 
This is the user-to-item interactions i.e., the adjacency 
matrix. Here ‘R’ refers to the rating provided by the user to 
an item. This adjacency matrix represents the structure of the 
graph. This is used for message passing between the user and 
item nodes in the user-item interaction graph. 
For the graph convolution operation (neighborhood 
aggregation) for learning the user and item embeddings, the 
matrix form of equations is as below: 
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  (5) 
 
Upon calculating the embeddings of the user and item at 
each layer, a weighted summation of these embeddings is 
taken for generating the final representations. The matrix 
equations are as follows: 
 

 (6) 
 
The matrix equation for finding the similarity between the 
initial weighted (trained) embeddings upon performing the 
loss function and optimization on the above final 
embeddings is as below: 
 

  (7) 
 
C. Loss Functions 
In this proposed work we have used Bayesian Personalized 
Ranking (BPR) [20] Loss for calculating the losses for 
LightGCN implementation. 
 

  (8) 
 
In the Bayesian Personalized Ranking loss function, we 
have calculated positive and negative samples (of places or 
items) for a user. For this, we considered a tuple (i, j, k), 
where for every user ‘i’ a positive item (place or destination) 
‘j’ is considered, and a negative item (place or destination) 
‘k’ is considered. 
Adam optimizer is used for LightGCN. We have 
implemented this LightGCN model using two datasets Yelp 
Reviews and Indonesia Tourism Destination Dataset for 
travel recommendations. 
The description and details of the datasets and 
implementation are mentioned below in section IV. 
 
Performance evaluation 
In this section, we discuss the implementation of LightGCN 
on travel datasets. We briefly describe the comparison 
baselines Matrix Factorization and Random baseline. We 
then compare the LightGCN approach with Matrix 
Factorization and Random baseline. We have also described 
the dataset and its features. We have mentioned the 
frameworks used. We then explained the evaluation metrics 
used and the data processing details followed by 
hyperparameter tuning and loss graphs. 
 
A. Comparision Baselines 
Matrix Factorization: We have implemented a traditional 
recommendation approach of matrix factorization for travel 
or place recommendations. We then compared it with the 
graph- based approach to observe the performance. 
Matrix Factorization [16, 17] is a popular collaborative filtering 
technique. As the name suggests the rating or the feedback 
matrix is factorized into user and item representations. 

Rating Matrix is a matrix with users as rows and Items as 
columns. In general, the user's respective rating of a 
particular item or any travel product or destination (travel 
product or destination) is stored in the corresponding cell. 
In this methodology, we initially generated random user and 
item embeddings. These initial embeddings are further 
trained via loss calculations and optimizations. These 
final trained embeddings are used for calculating the rating 
prediction score or for finding the similarity between the 
users and the items. 
For the data processing, we have considered both the yelp 
reviews and the Indonesia tourism dataset. Like LightGCN 
data processing, we have only included the ratings >=4 in the 
range of 0-5. We have calculated unique mappings of users 
and items (places) and generated initial random embeddings. 
These embeddings are further trained, and the losses are 
optimized to generate final user and place embeddings. 
We have used the best hyperparameters for MF for both 
Yelp Reviews and the Indonesia tourism datasets as per [22, 23]. 
The parameters are as follows: 
 

Table 1: Matrix factorization hyperparameters 
 

Iterations 800 
Batch size 1024 

Learning rate (LR) 1 
Lambda 0.0002 

 
We have used the Mean square error loss function [19] for 
matrix factorization. 
 

  (9) 
 
In the mean square error loss function, we calculated the 
mean of squared differences of the actual rating values 
(ground truth) and the predicted rating score (normalized dot 
product of the trained user and item embeddings). 
We have used Gradient descent optimization for Matrix 
factorization. 
 
Random Baseline: In this method, we are populating the 
rating matrix with random values. Then we calculate the 
metrics to observe its performance. 
The LightGCN model results are compared with the Matrix 
Factorization approach and random baseline method. The 
comparison results and the performance evaluation are 
detailed below. 
 
B. Evaluation Metrics 
We have used the below metrics to evaluate our 
implementation [18] of LightGCN, Matrix Factorization, and 
Random baseline approach: 
 
Precision@K: By definition, it is the percentage of 
recommended items in the top-k that are relevant. Here, we 
have calculated the proportion of the positive items (relevant 
items) to the overall top k positive items (places) for a user 
and we have taken an average across all the users. Precision 
refers to the quality of the metrics. 
 
Recall@K: By definition, it is the percentage of relevant 
items found in the top-k recommendations. It refers to the 
quantity of the metrics. Here we have considered the 
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proportion of positive items of a user for top k positive items 
for overall ground truth (actual ratings of a user to the item). 
We have then taken an average across all the users. 
 

 (10) 
 
NDCG@K (Normalized Discounted Cumulative Gain): 
By definition, NDCG is the ratio of the suggested order or 
ranking of the items (DCG) over the ideal order. While 
precision and recall consider the relevant positive items for 
top k items. NDCG metric also considers the ranking factor. 
Here DCG calculates the summation of the weighted scores 
based on the predicted ranking or order or position of the 
items for a given user. It then takes the ratio of this DCG to 
the ideal order of the travel places or items for a given user. 
We then calculate the average across all the users. 
 

 
 (11) 
 
C. Dataset Explanation 
For the implementation of the LightGCN model we are 
using the following open-source datasets: 
1. Yelp review datasets 
2. Indonesia tourism Kaggle dataset Volume and Features 

of the datasets: 
 
Yelp review dataset: The data is a collection of Yelp 
reviews, businesses, users, and check-ins for the Phoenix, 
AZ metropolitan area [8]. It has 229,907 yelp reviews. 

There are 200K+ records of user and place ratings and 32 
features. The features in this dataset include user 
information such as user id, Name, Reviewer type, Review 
count, place details such as business city, business full 
address, business id, business categories, and stars field for 
users’ feedback to places visited. 
 
Indonesia tourism Kaggle dataset: Indonesia tourism 
Kaggle dataset [7] contains several tourist attractions in 5 
major cities in Indonesia, namely Jakarta, Yogyakarta, 
Semarang, Bandung, and Surabaya. It has data since 2015. 
There are 10,000 records with 16 features. The features of 
this dataset include user information such as user Id, 
Location, Age, and place information such as Place Id, Place 
Name, Description, Category, City, Price, Coordinate, Lat, 
and rating field for users' feedback to places visited. 
 
D. Training Framework 
For implementing the LightGCN model and Matrix 
Factorization we have used libraries: PyTorch, 
Pytorch_geometric – It is PyTorch library, mainly used for 
Graph Neural Networks (GNN) models. 
Networkx – Python package for graph networks. 
Torch-scatter, Torch-sparse, Sklearn, NumPy, Pandas, 
Matplotlib 
 
E. Training Procedure 
LightGCN data preprocessing: We have taken the Yelp 
reviews dataset and the Indonesia tourism destination 
dataset and converted them to graph format considering 
explicitly the relation or interaction between the users given 
to the travel items (destinations) using user and place unique 
mappings. Here the users and the places are represented as 
nodes and the interaction ie., the user rating to a place is 
considered as the edge or the link between the nodes. As we 
wanted to recommend the destinations that the user is most 
interested in, we have only considered the edges whose 
ratings are >=4 for a range of 0-5 ratings (user rating to a 
place). 
We have taken this data and split it to test, train, and 
validation data sets. The ratio of data split is 90, 5, 5 for 
train, validation, and test sets respectively. We have used 
the train dataset for training the LightGCN algorithm and 
validated our results using the validation set. Finally, the 
rating prediction scores or recommendations of places or 
destinations for a user are provided using the trained initial 
embeddings on the test dataset. 

 

 
 

Fig 2: Yelp Reviews sample graph data
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Fig. 2 represents the graph data for the yelp reviews dataset. 
Here the nodes are users and the destinations (places) and 
the edges represent the rating (link) for a user to an item 
(place). 
 
Hyperparameter Tuning: For the Travel or trip 
recommendation system, we have performed 
hyperparameter tuning for both yelp reviews and Indonesia 
tourism destination datasets for the LightGCN model. For 

this, we have varied each hyperparameter individually and 
observed the performance metrics and finalized the 
parameters based on overall performance. 
 
Hyperparameter tuning for Yelp Reviews Dataset: Upon 
training the LightGCN model, we have varied the number of 
message-passing layers for the validation set to observe the 
performance evaluation. 

 

 
 

Fig 3: Varying message passing layers for Yelp reviews dataset 
 

From Fig.3, we can observe that when using three message- passing layers the precision, recall, and NDCG metrics show 
better performance. 

 
 

Fig 4: Hyperparameter tuning for lambda loss for the yelp dataset 
 

In Fig. 4 we have varied loss regularization function lambda and could observe better performance metric results for lambda 
value 1e-7.
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Fig 5: Hyperparameter tuning for batch size for the yelp dataset 
 

We have varied the batch size in Fig. 5 and observed that 
there is not much difference in varying the batch size 
metrics. 
We have similarly performed hyperparameter tuning for the 
Indonesia Tourism destination Dataset. The hyperparameter 
tuning is as shown below: 

 
Hyperparameter tuning for the Indonesia Tourism 
destination Dataset: For Message-passing layers variation- 
hyperparameter tuning, Fig. 6 has better performance 
metrics for two message-passing layers for this dataset. 

 

 
 

Fig 6: Hyperparameter tuning for message passing layers Indonesia dataset 
 

In Fig. 7 we have performed Lambda loss regularization variation and observed that for lambda value 1e-3 the performance is 
better than other values.
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Fig 7: Hyperparameter tuning for loss function Indonesia dataset 
 
We have varied the batch size in Fig. 8 and observed the performance is better with batch sizes 256 and 1024.
 

 
 

Fig 8: Hyperparameter tuning for Indonesia tourism dataset for batch sizes 
 

Upon performing the hyperparameter tuning we have finalized the parameters as shown below:

Table 2: Final LightGCN Parameters 
 

Final LightGCN Training parameters Yelp Review Dataset Indonesia Tourism dataset 
Iterations 10,000 10,000 
Batch size 1024 1024 

Learning rate (LR) 1.00E-03 1.00E-03 
Iterations per evaluation 200 200 

Iterations per LR 200 200 
Lambda (Loss Regularization) 1.00E-07 1.00E-03 

Message passing Layers 3 2 
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Loss function graphs 
 

 
 

Fig 9: Loss function graphs 

Fig. 9 shows the loss function plot. We have observed a 
significant decrease in the validation and training dataset 
loss. 
Our code is available at 
https://github.com/SravaniPrakki/TravelRecommendation_
ML 
 
Results 
In this section, we mention the comparison of LightGCN 
results for travel recommendations with Matrix 
Factorization and Random baseline. We also mention the 

sample place recommendations suggested to the user using 
LightGCN. 
 
Comparison of Results: We have performed a comparison 
of the evaluation metrics for the three methods LightGCN, 
Matrix Factorization, and Random baseline. From the below 
figures, Fig. 10 and Fig. 11, we observe that the graph-based 
model LightGCN has better performance results for all the 
metrics Recall@20, Precision@20, and NDCG@20 in 
comparison to the non-graph-based traditional MF model 
and Random baseline. 

 
Table 3: Performance evaluation for yelp reviews dataset 

 

Test Set 
Methods Recall@20 Precision@20 NDCG@20 

LightGCN 0.03404 0.00252 0.01319 
Matrix Factorization 0.01274 0.00083 0.00664 

Random Baseline 0.00125 9e-5 0.00043 
Validation Set 

Methods Recall@20 Precision@20 NDCG@20 
LightGCN 0.03167 0.0025 0.01201 

Matrix Factorization 0.01367 0.00089 0.00767 
Random Baseline 0.00196 0.00014 0.00085 

Train Set 
Methods Recall@20 Precision@20 NDCG@20 

LightGCN 0.03511 0.00771 0.01908 
Matrix Factorization 0.01452 0.0026 0.00993 

 
Table 4: Performance evaluation for Indonesia tourism destination dataset 

 

Test Set 
Methods Recall@20 Precision@20 NDCG@20 

LightGCN 0.09195 0.00655 0.03492 
Matrix Factorization 0.04195 0.00379 0.0162 

Random Baseline 0.02586 0.00207 0.00963 
Validation Set 

Methods Recall@20 Precision@20 NDCG@20 
LightGCN 0.07135 0.00445 0.03011 

Matrix Factorization 0.0468 0.00274 0.01405 
Random Baseline 0.0234 0.00205 0.01039 

Train Set 
Methods Recall@20 Precision@20 NDCG@20 
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LightGCN 0.04955 0.0305 0.04002 
Matrix Factorization 0.04349 0.02683 0.03419 

 
From the comparison of results, we can observe that 
LightGCN has achieved very good performance in 
comparison to Matrix Factorization and Random Baseline. 
We have achieved a 167% increase in precision, a 203% 

increase in recall, and a 98.6% NDCG increase in metrics in 
comparison to Matrix Factorization. 
The comparison of results for travel-based recommendations 
is shown below: 

 

 
 

Fig 10: Comparison results for yelp reviews 
 

 
 

Fig 11: Comparison results for Indonesia tourism dataset 
 

Sample Results: Top K place recommendations for a given user using the LightGCN approach for both the yelp review  and 
Indonesia tourism datasets:
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Fig 12: Sample results 
 

Summary 
We have implemented a graph-based model- “LightGCN” 
and a non-graph-based traditional model- “Matrix 
Factorization” for travel or trip recommendation systems on 
yelp reviews and Indonesia tourism datasets. We have 
performed training and hyperparameter tuning for both 
LightGCN and Matrix Factorization models for travel or 
place recommendations. We have evaluated our LightGCN 
model for place recommendations using Precision@K, 
Recall@K, and NDCG@K metrics and generated results 
after training the model to predict the top destination 
recommendations for a given user. We then compared our 
results of the LightGCN approach with the Matrix 
Factorization and Random baseline approaches. 
We achieved better performances [167% increase in 
precision, 203% increase in recall, and 98.6% NDCG 
increase in metrics] for the LightGCN model (graph-based 
approach) compared to the Matrix Factorization approach 
for travel or place recommendations. 
 
Future Work 
In this work, we have implemented a transductive model. 
Here the learned embeddings cannot be generalized to 
unknown values or values other than the implemented 
dataset. We can extend this approach to adapt to inductive 
models such as IGMC (Inductive Graph Matrix 
Completion) which can be generalized to any unknown or 
unseen data. This experiment also focuses on user-item 
interaction for link-based predictions. The model could be 
further extended to include node-level and graph-level 
predictions. This work can also be extended to implement 
other Graph models such as Graph sage and Graph attention 
neural networks to observe the metrics for travel 
recommendations. 
 

References 
1. He, Xiangnan, et al. Lightgcn: Simplifying and 

powering graph convolution network for 
recommendation." Proceedings of the 43rd 
International ACM SIGIR conference on research and 
development in Information Retrieval; c2020. 

2. Bentaleb A, El Bouzekri El Idrissi Y, Ait Lahcen A. A 
Review on Content Based Recommender Systems in 
Tourism. In: Motahhir, S., Bossoufi, B. (eds) Digital 
Technologies and Applications. ICDTA 2021. Lecture 
Notes in Networks and Systems. 2021, 211. Springer, 
Cham. https://doi.org/10.1007/978-3-030-73882-2_48 

3. Jia Z, Yang Y, Gao W, Chen X. User-Based 
Collaborative Filtering for Tourist Attraction 
Recommendations, IEEE International Conference on 
Computational Intelligence & Communication 
Technology; c2015. p. 22-25. 
DOI:10.1109/CICT.2015.20. 

4. Chen Lei, et al. Multi-view graph attention network for 
travel recommendation. Expert Systems with 
Applications. 2022;191:116234. 

5. https://towardsdatascience.com/graph-neural-network-
gnn-architectures- for-recommendation-systems-
7b9dd0de0856 

6. https://neptune.ai/blog/graph-neural-network-and-some-
of-gnn- applications 

7. https://www.kaggle.com/datasets/aprabowo/indonesia-
tourism- destination 

8. https://data.world/brianray/yelp- 
reviews/workspace/file?filename=yelp_training_set_rev
iew.csv 

9. https://medium.com/stanford-cs224w/lightgcn-with-
pytorch-geometric- 91bab836471e 

10. Berg Rianne Van Den, Thomas Kipf N, Max Welling. 
Graph convolutional matrix completion. arXiv preprint. 

http://www.computersciencejournals.com/ijcai


International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai 

~ 17 ~ 

2017;ar14:1706.02263. 
11. Xin Haoran, et al. Out-of-town recommendation with 

travel intention modeling. Proceedings of the AAAI 
Conference on Artificial Intelligence; c2021, 35(5). 

12. Wang Meng. Applying Internet information technology 
combined with deep learning to tourism collaborative 
recommendation system. Plos one. 
2020;15(12):e0240656. 

13. Kbaier Mohamed Elyes Ben Haj, et al. A Personalized 
Hybrid Tourism Recommender System. IEEE/ACS 14th 
International Conference on Computer Systems and 
Applications (AICCSA); c2017. p. 244-250. 

14. Wang Xiang, et al. Neural graph collaborative filtering. 
Proceedings of the 42nd international ACM SIGIR 
conference on Research and development in 
Information Retrieval; c2019. 

15. Zhang Muhan, Yixin Chen. Inductive matrix 
completion based on graph neural networks. arXiv 
preprint arXiv:1904.12058; c2019. 

16. Koren, Yehuda, Robert Bell, and Chris Volinsky. 
Matrix factorization techniques for recommender 
systems. Computer. 2009;42(8):30-37. 

17. https://en.wikipedia.org/wiki/Matrix_factorization_(reco
mmender_syste ms) 

18. https://medium.com/@m_n_malaeb/recall-and-
precision-at-k-for- recommender-systems-
618483226c54 

19. https://towardsdatascience.com/recommender-systems-
matrix- factorization-using-pytorch-
bd52f46aa199https://medium.com/stanford-
cs224w/lightgcn-with-pytorch-geometric- 
91bab836471e 

20. https://github.com/pyg-
team/pytorch_geometric/issues/1876 

21. https://jovian.ai/aakanksha-ns/anime-ratings-matrix- 
factorization/v/10?utm_source=embed 

22. https://towardsdatascience.com/recommendation-
system-matrix- factorization-d61978660b4b 

23. https://github.com/XingxingHuang/Machine_Learning_
Practices/blob/m 
aster/ML_python_implementation/matrix_factorization.
py 

24. https://datascience.stackexchange.com/questions/40590/
does-a-matrix- factorization-recommendation-engine-
use-user-item-related-features 

25. https://d2l.ai/chapter_recommender-systems/mf.html 
26. https://datascience.stackexchange.com/questions/40590/

does-a-matrix- factorization-recommendation-engine-
use-user-item-related-features 

27. https://beckernick.github.io/matrix-factorization-
recommender/ 

28. https://github.com/beckernick/matrix_factorization_rec
ommenders 

29. https://everdark.github.io/k9/notebooks/ml/matrix_facto
rization/matrix_ factorization.nb.html 

30. https://machinelearningmastery.com/precision-recall-
and-f-measure-for- imbalanced- 
classification/#:~:text=Once%20precision%20and%20r
ecall%20have,) 

31. %20%2F%20(Precision%20%2B%20Recall) 
32. https://www.google.com/search?q=precision%2C+recall

+formula&rlz= 
1C1CHBF_enUS938US938&oq=precision%2C+recall+
formula&aqs=c 

hrome.69i57j0i512j0i22i30l8.6756j0j7&sourceid=chro
me&ie=UTF-8 

33. https://medium.com/towards-data-science/factorization-
machines-for- item-recommendation-with-implicit-
feedback-data-5655a7c749db 

34. https://scikit- 
learn.org/stable/modules/generated/sklearn.metrics.preci
sion_recall_fsco re_support.html 

35. https://machinelearningmastery.com/precision-recall-
and-f-measure-for- imbalanced-classification/ 

36. https://medium.com/@MohammedS/performance-
metrics-for- classification-problems-in-machine-
learning-part-i-b085d432082b 

37. https://www.analyticsvidhya.com/blog/2020/04/confusi
on-matrix- machine-learning/ 

38. https://www.analyticsvidhya.com/blog/2018/06/compre
hensive-guide- recommendation-engine-python/? 

39. https://docs.fast.ai/tutorial.collab.html 
40. https://github.com/EsratMaria/Improved-Movie-

Recommendation- System-with-KNN-and-Cosine- 
Similarity/blob/master/Recommendation%20System%2
0with%20KNN 

41. %20and%20Cosine%20similarity.ipynb 
42. https://towardsdatascience.com/collaborative-filtering-

on-anime-dataset- using-fastai2-130ae32fe433 
43. https://medium.com/unpackai/metrics-for-classification-

in-fastai- ab110fd8fbe8 
44. https://forums.fast.ai/t/getting-metrics-on-validation-

set/79827/4 
45. https://towardsdev.com/compute-performance-metrics-

f1-score- precision-accuracy-for-cnn-in-fastai-
959d86b6f8ad 

46. https://medium.com/unpackai/metrics-for-classification-
in-fastai- ab110fd8fbe8 

47. https://towardsdatascience.com/collaborative-filtering-
on-anime-dataset- using-fastai2-130ae32fe433 

48. https://forums.fast.ai/t/assertion-
error/79647?replies_to_post_number=2 

49. https://stackoverflow.com/questions/60449931/fastai-
cuda-error-device- side-assert-triggered 

50. https://colab.research.google.com/drive/1Nd9alFlfNvlFr
TRGFYFhmLG 
kP7Iy1kle?usp=sharing#scrollTo=OxyQhPsJe2ZN 

51. https://medium.com/stanford-cs224w/friend-
recommendation-using- graphsage-ffcda2aaf8d6 

52. https://colab.research.google.com/drive/1Nd9alFlfNvlFr
TRGFYFhmLG kP7Iy1kle?usp=sharing 

53. https://colab.research.google.com/drive/1uF6sLL65HjW
h6mgL4wTyC Aq8xtxoXhgw 

54. https://colab.research.google.com/drive/1phV7VouGG0
T- 
7eBtHo_44bDCRB9xJyPA#scrollTo=o2P3zYR8Q8EX 

55. https://colab.research.google.com/drive/1pl9F02cFbGD
CBWUhUcylF9 
qWj27zNMzv#scrollTo=nPgvoKnlyEGN 

56. https://github.com/AntonioLonga/PytorchGeometricTut
orial/blob/main/ Tutorial1/Tutorial1.ipynb 

57. https://colab.research.google.com/drive/1h3- 
vJGRVloF5zStxL5I0rSy4ZUPNsjy8?usp=sharing 

58. https://medium.com/@benalex/implement-your-own-
music- recommender-with-graph-neural-networks-
lightgcn-f59e3bf5f8f5 

59. https://colab.research.google.com/drive/1EdgZaTb8mtc
4vEnedNNtRyg Z_Ls-jQqy?usp=sharing 

http://www.computersciencejournals.com/ijcai


International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai 

~ 18 ~ 

60. https://colab.research.google.com/drive/1EdgZaTb8mtc
4vEnedNNtRyg Z_Ls-
jQqy?usp=sharing#scrollTo=3gxBd579e8Ox 

61. https://www.youtube.com/watch?v=AQU3akndun4&t=
154s 

62. https://medium.com/stanford-cs224w 
63. https://medium.com/analytics-vidhya/how-to-use-

google-colab-with- github-via-google-drive-
68efb23a42d 

64. https://www.jianshu.com/p/767950b560c4 
65. https://medium.com/@jn2279/better-recommender-

systems-with- lightgcn-a0e764af14f9 
66. https://chowdera.com/2022/04/202204211353274448.ht

ml 
67. http://ethen8181.github.io/machine-

learning/recsys/4_bpr.html 
68. https://discuss.pytorch.org/t/issue-about-bpr-

loss/134840 
69. https://medium.com/@bhawna7374/movie-

recommendation-system- with-neural-networks-and-
collaborative-filtering-explicit-feedback- d2afaafef350 

70. https://discuss.pytorch.org/t/problem-with-dimension-in-
graph-neural- networks/127296 

71. https://colab.research.google.com/drive/1KKugoFyUdy
dYC0XRyd dcROzfQdMwDcnO?usp=sharing 

72. https://towardsdatascience.com/building-a-
recommendation-system- using-neural-network-
embeddings-1ef92e5c80c9 

73. https://github.com/bhawnapaliwal/Collaborative-
Filtering-with-Neural- 
Network/blob/master/COLLABORATIVE%20FILTERI
NG%20USING 

74. %20NEURAL%20NETWORKS%20FOR%20EXPLIC
IT%20%20FEE 
DBACK%20RECOMMENDATION%20SYSTEMS.p
df 

75. https://colab.research.google.com/drive/1KftirIug97suNj
0rrd0f7IHF8lc7 RLNa 

76. https://colab.research.google.com/drive/1eAgTLR4lCy2
_j8kNDZA7Ol 
Z7b0G8CETY#scrollTo=lG6dE0LoS4D0 

77. https://colab.research.google.com/github/sparsh-
ai/coldstart- 
recsys/blob/main/docs/L281872_Cold_Start_Recommen
dations.ipynb#s crollTo=3XcP6T_wjzz8 

78. https://colab.research.google.com/drive/17Eq- 
hjU0fSUmSRqBK6TjZNCfDaNy_DLR#scrollTo=14-
NSkJ2VHGd 

79. https://colab.research.google.com/github/google/eng- 
edu/blob/main/ml/recommendation-
systems/recommendation- systems.ipynb 
https://www.youtube.com/@machinelearningalchemy9
621/videos 

80. https://www.youtube.com/@welcomeaioverlords 

http://www.computersciencejournals.com/ijcai

