
~ 6 ~

International Journal of Computing and Artificial Intelligence 2023; 4(2): 06-18

E-ISSN: 2707-658X
P-ISSN: 2707-6571
IJCAI 2023; 4(2): 06-18
Received: 06-05-2023
Accepted: 10-06-2023

Sravani Prakki
Department of Computer
Science, California State
University, East Bay
Hayward, California, United
States

Moayed Daneshyari
Computer Science Department
California State University,
East Bay Hayward, California,
United States

Corresponding Author:
Sravani Prakki
Computer Science Department
California State University,
East Bay Hayward, California,
United States

Travel recommendation system using graph neural

networks

Sravani Prakki and Moayed Daneshyari

DOI: https://doi.org/10.33545/27076571.2023.v4.i2a.66

Abstract
There are many applications and uses of recommendation systems. For any recommendation system,
the user-to-item interactions are important which can also be seen as graphs. We are focusing on travel
or place recommendations. There are very few works on travel or trip recommendation systems using
Graph Neural Networks (GNN) leveraging user-to- item interactions. In this work, we have
implemented travel or place recommendations using the LightGCN model and compared it with the
implementation of the traditional non-graph-based collaborative filtering Matrix Factorization (MF)
approach. We have then shown that the LightGCN model performs better for travel or place
recommendations than the Matrix Factorization approach. We achieved very good results [203%
increase in precision, a 167% increase in recall, and a 98.6% NDCG increase in metrics] using a graph
based LightGCN model for travel or place recommendations compared to the Matrix Factorization
approach.

Keywords: Graph neural networks, LightGCN, neural graph collaborative filtering, collaborative
filtering, embedding propagation

Introduction
In this section, we discuss the motivation for graph-based travel recommendations, our
project goal, and the description of the article outline of the below sections.
Many of us enjoy planning vacations or trips. However, according to Travel Daily News -
”66% of travelers say that planning a Trip is stressful and difficult”. Travel Agent Central
says - “89 Percent Say Travel Is Enjoyable but Stressful and Difficult to Plan”. Omnibus
survey says “Deciding on a location (50%)”
This could be because, with the advancement of big data, multiple internet resources are
available. Finding vacation destinations or travel packages among these huge travel-related
online resources is very hard.
Also, sometimes we might not be fully aware of all our choices to make fast decisions. Many
travel service agencies are available in the market to guide us with trip recommendations.
However, it is also hard for them to personalize based on individual customer preferences.
This forms the primary motivation for any personalized travel recommendation systems.
They reduce this huge information overload to only a small subset containing the choices or
information the user or customer is most likely interested in.
As recommendation systems are a broader area, we are focusing on travel-based
recommendation models. In general, travel-based recommendation models are different from
traditional recommendation systems. This is because travel products are not commonly
browsed or purchased, unlike general products like music, movies, etc. Moreover, many
factors such as price, destinations, etc., are also considered when purchasing travel products
or making any travel plans.
There are many travel recommendation systems and techniques available in the market. In
general, recommendation systems use explicit or implicit feedback (could be a rating or
feedback provided by the user to an item or travel product, or a place) or any information
related to users' past experiences or interactions to suggest future recommendations.
The interactions between users and items (travel products or places or destinations) could
also be viewed as a graph. Numerous problems in the actual world can be represented using
graphs. Any complex or simple data could be represented well, using graphs.

https://doi.org/10.33545/27076571.2023.v4.i2a.66

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 7 ~

They also consider the underlying relationship between the
entities. Though there are many traditional-based travel
recommendation models such as collaborative filtering,
content-based filtering, convolution neural networks, matrix
factorization, etc., they consider either user information or
the travel product or item information to suggest
recommendations.
Whereas in graph-based recommendation systems, both the
user-to-item interactions are considered for
recommendations. Also, there are very few works on graph-
based recommendation systems for travel or place
recommendation. This forms the motivation for our project.
Our objective is to develop a travel or place
recommendation solution that leverages the graph structure
considering the underlying relationship between users and
the items or place data relationships for making
recommendations.
In Section II, we have mentioned related work. In Section
III the methodology of the proposed solution is described.
The performance evaluation and results are described in
section IV and section V respectively. The summary of the
project and future works are mentioned in sections VI and
VII followed by acknowledgments and references.

Related Work
In this section, we discuss the related works. We have
broadly classified it into three categories non-graph-based
travel recommendation systems, graph-based travel
recommendation systems, and general graph-based
recommendation systems.

A. Non-graph-based travel recommendation systems
Below we mentioned some of the important works in non-
graph-based travel recommendation systems.
Analysis of tourism recommendation systems works since
2008, focusing on content-based suggestions, has been
mentioned in the conference survey article proposed by
Bentaleb et al (2021) [2]. The author discusses several
methods for making traditional recommendations, such as
content-based methods, collaborative filtering, and hybrid
methods.
Wang et al. (2020) [12] proposed a tourism collaborative
system using deep learning methodology. They have used
techniques such as Convolutional Neural Networks (CNN),
Deep Neural Networks (DNN) to process user reviews and
tourism service items.
Kbaier et al (2017) [13] proposed a personalized hybrid
recommendation system for tourists. They have used
techniques and algorithms such as KNN Algorithm using
Collaborative filtering, content-based techniques, and
decision tree for demographic filtering.
The above approaches use traditional methods for
suggesting travel-based recommendations. Unlike our
approach, these methods do not leverage graph structure.

B. Graph-based travel recommendation systems
Below we mentioned some of the important works in graph-
based travel recommendation systems.
Xin et al. (2021) [11] proposed an Out-of-Town
Recommendation system. They have used techniques such
as Graph Neural Networks, Neural Topic Model (NTM),
and Matrix Factorization. In this work, they are suggesting
recommendations based on the user’s travel behavior.

Chen et al (2021) [4] proposed a Multi-view Graph Attention
Network for the Travel Recommendation system. In this
work, they are predicting the click probability of a user.
The above works have not considered rating attribute, unlike
our approach. As there are very few works in travel or place
recommendation systems using Graph-based models, in our
work we propose an implementation of a travel
recommendation system using the LightGCN approach.
In our work, we are implementing the LightGCN graph-
based model proposed by He et al (2020) [1] for travel or
place recommendations. This model uses travel or trip-
related datasets (Yelp reviews, Indonesia tourism
destination dataset) with users and places as nodes and user
ratings as the weight to edges between the nodes. It uses
rating as a feedback metric to suggest travel places or
destinations or business places to users.

C. General Graph-based recommendation systems
Here we discuss general graph-based recommendation
systems (not related to travel) A graph convolution matrix
completion for recommender systems was proposed by Berg
et al. (2017) [10] considering the link prediction on graphs
using user data, movie ratings, and reviews (movies
dataset). On the bipartite interaction graph, they have
considered a graph auto-encoder architecture using
differentiable message passing.
Wang et al (2019) [14] proposed the Neural Graph
Collaborative filtering (NGCF) model. This work discusses
the application of GCN (Graph neural network) concepts for
recommendations. They use GCN features such as Feature
Transformation, Neighborhood Aggregation, and Non-
linearity activation function for calculating the user and item
embeddings for predicting recommendations.
Zhang M, and Chen Y proposed Inductive matrix
completion (IGMC) based on graph neural networks (2019)
[15]. This work addresses the issues of the Rianne van den
Berg et al [10] paper for Matrix completion. Here the
generalization of the learned embeddings is extended to
unseen data. They have considered movies dataset.

Methodology
In this section, we discuss the LightGCN model, its
architecture, and loss and optimization functions.
The LightGCN model is proposed by He, Xiangnan, et al [1].
In this paper, a thorough ablation analysis has been
performed on Graph Convolution Neural Network (GCN)
model Neural Graph collaborative filtering (NGCF) model
proposed for recommendations.
In the NGCF model for graph-based recommendations (a
variant of GCN) the concepts from the GCN such as feature
transformation and linearity activation function are directly
taken into consideration without much understanding of
why these features were considered for recommendations.
In general, they are mainly useful for node classification-
related tasks for graphs. The GCN for recommendations has
experimented in the NGCF [14] model. This work is taken as
the basis for the LightGCN model.
From the analysis of ablation studies performed on the
earlier works for recommendation systems in the Graph
Neural Networks (GNN) NGCF model, it has been found
that two operations, feature transformation, and nonlinearity
activation function will not contribute much to the
performance of the recommendation system. Moreover, it
has been observed that adding these functionalities will

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 8 ~

reduce performance and will make the training of the system
more complex.
Removing these functions has shown significant
improvement in the performance of the recommendation
model using Graph Neural Networks. This model is called
LightGCN. The main intuition behind removing these

functionalities is that we merely consider the user and item
as identification factors (node IDs) without any rich features
for a user-item interaction graph. Performing non-linear
feature transformation for several message-passing layers
will not add any benefit to the performance of the system.

A. LightGCN Architecture

Fig 1: LightGCN architecture

The LightGCN model focuses on “neighborhood
aggregation”. This model leverages the salient structure of
the graph for updating the node embeddings. In general
user-item interaction, graphs are used for recommendations
in graph models.
For providing recommendations of items or products to the
user in the LightGCN model the initial user and item
embeddings are randomly initialized. In this model, the
initial user and item embeddings are the only learnable
parameters. These initial embeddings are linearly
propagated on the user-item interaction graph. This process
is repeated for several layers like any neural network model.
Mean of weighted summation of embeddings at every layer
is calculated to obtain the final embeddings which would be
used for loss metrics and backpropagation to update the
initial embeddings (weights). These updated initial
embeddings of users and items are used to calculate the
similarity (dot product of initial user and item embeddings)
to suggest items to a user.

B. Mathematical equations
Neighborhood aggregation (updating of items and user’s
embeddings)

 (Initial user, item embeddings) (1)

Graph convolution operation (neighborhood aggregation)

 (2)

Nu refers to all the items that interacted with a user u (degree
of the user) Ni refers to all the users that interacted with an
item I (degree of the item)
Final embeddings (average weighted summation of
embeddings at each layer)

 (3)

Prediction (similarity between users and items) In matrix
form,

 (4)

This is the user-to-item interactions i.e., the adjacency
matrix. Here ‘R’ refers to the rating provided by the user to
an item. This adjacency matrix represents the structure of the
graph. This is used for message passing between the user and
item nodes in the user-item interaction graph.
For the graph convolution operation (neighborhood
aggregation) for learning the user and item embeddings, the
matrix form of equations is as below:

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 9 ~

 (5)

Upon calculating the embeddings of the user and item at
each layer, a weighted summation of these embeddings is
taken for generating the final representations. The matrix
equations are as follows:

 (6)

The matrix equation for finding the similarity between the
initial weighted (trained) embeddings upon performing the
loss function and optimization on the above final
embeddings is as below:

 (7)

C. Loss Functions
In this proposed work we have used Bayesian Personalized
Ranking (BPR) [20] Loss for calculating the losses for
LightGCN implementation.

 (8)

In the Bayesian Personalized Ranking loss function, we
have calculated positive and negative samples (of places or
items) for a user. For this, we considered a tuple (i, j, k),
where for every user ‘i’ a positive item (place or destination)
‘j’ is considered, and a negative item (place or destination)
‘k’ is considered.
Adam optimizer is used for LightGCN. We have
implemented this LightGCN model using two datasets Yelp
Reviews and Indonesia Tourism Destination Dataset for
travel recommendations.
The description and details of the datasets and
implementation are mentioned below in section IV.

Performance evaluation
In this section, we discuss the implementation of LightGCN
on travel datasets. We briefly describe the comparison
baselines Matrix Factorization and Random baseline. We
then compare the LightGCN approach with Matrix
Factorization and Random baseline. We have also described
the dataset and its features. We have mentioned the
frameworks used. We then explained the evaluation metrics
used and the data processing details followed by
hyperparameter tuning and loss graphs.

A. Comparision Baselines
Matrix Factorization: We have implemented a traditional
recommendation approach of matrix factorization for travel
or place recommendations. We then compared it with the
graph- based approach to observe the performance.
Matrix Factorization [16, 17] is a popular collaborative filtering
technique. As the name suggests the rating or the feedback
matrix is factorized into user and item representations.

Rating Matrix is a matrix with users as rows and Items as
columns. In general, the user's respective rating of a
particular item or any travel product or destination (travel
product or destination) is stored in the corresponding cell.
In this methodology, we initially generated random user and
item embeddings. These initial embeddings are further
trained via loss calculations and optimizations. These
final trained embeddings are used for calculating the rating
prediction score or for finding the similarity between the
users and the items.
For the data processing, we have considered both the yelp
reviews and the Indonesia tourism dataset. Like LightGCN
data processing, we have only included the ratings >=4 in the
range of 0-5. We have calculated unique mappings of users
and items (places) and generated initial random embeddings.
These embeddings are further trained, and the losses are
optimized to generate final user and place embeddings.
We have used the best hyperparameters for MF for both
Yelp Reviews and the Indonesia tourism datasets as per [22, 23].
The parameters are as follows:

Table 1: Matrix factorization hyperparameters

Iterations 800
Batch size 1024

Learning rate (LR) 1
Lambda 0.0002

We have used the Mean square error loss function [19] for
matrix factorization.

 (9)

In the mean square error loss function, we calculated the
mean of squared differences of the actual rating values
(ground truth) and the predicted rating score (normalized dot
product of the trained user and item embeddings).
We have used Gradient descent optimization for Matrix
factorization.

Random Baseline: In this method, we are populating the
rating matrix with random values. Then we calculate the
metrics to observe its performance.
The LightGCN model results are compared with the Matrix
Factorization approach and random baseline method. The
comparison results and the performance evaluation are
detailed below.

B. Evaluation Metrics
We have used the below metrics to evaluate our
implementation [18] of LightGCN, Matrix Factorization, and
Random baseline approach:

Precision@K: By definition, it is the percentage of
recommended items in the top-k that are relevant. Here, we
have calculated the proportion of the positive items (relevant
items) to the overall top k positive items (places) for a user
and we have taken an average across all the users. Precision
refers to the quality of the metrics.

Recall@K: By definition, it is the percentage of relevant
items found in the top-k recommendations. It refers to the
quantity of the metrics. Here we have considered the

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 10 ~

proportion of positive items of a user for top k positive items
for overall ground truth (actual ratings of a user to the item).
We have then taken an average across all the users.

 (10)

NDCG@K (Normalized Discounted Cumulative Gain):
By definition, NDCG is the ratio of the suggested order or
ranking of the items (DCG) over the ideal order. While
precision and recall consider the relevant positive items for
top k items. NDCG metric also considers the ranking factor.
Here DCG calculates the summation of the weighted scores
based on the predicted ranking or order or position of the
items for a given user. It then takes the ratio of this DCG to
the ideal order of the travel places or items for a given user.
We then calculate the average across all the users.

 (11)

C. Dataset Explanation
For the implementation of the LightGCN model we are
using the following open-source datasets:
1. Yelp review datasets
2. Indonesia tourism Kaggle dataset Volume and Features

of the datasets:

Yelp review dataset: The data is a collection of Yelp
reviews, businesses, users, and check-ins for the Phoenix,
AZ metropolitan area [8]. It has 229,907 yelp reviews.

There are 200K+ records of user and place ratings and 32
features. The features in this dataset include user
information such as user id, Name, Reviewer type, Review
count, place details such as business city, business full
address, business id, business categories, and stars field for
users’ feedback to places visited.

Indonesia tourism Kaggle dataset: Indonesia tourism
Kaggle dataset [7] contains several tourist attractions in 5
major cities in Indonesia, namely Jakarta, Yogyakarta,
Semarang, Bandung, and Surabaya. It has data since 2015.
There are 10,000 records with 16 features. The features of
this dataset include user information such as user Id,
Location, Age, and place information such as Place Id, Place
Name, Description, Category, City, Price, Coordinate, Lat,
and rating field for users' feedback to places visited.

D. Training Framework
For implementing the LightGCN model and Matrix
Factorization we have used libraries: PyTorch,
Pytorch_geometric – It is PyTorch library, mainly used for
Graph Neural Networks (GNN) models.
Networkx – Python package for graph networks.
Torch-scatter, Torch-sparse, Sklearn, NumPy, Pandas,
Matplotlib

E. Training Procedure
LightGCN data preprocessing: We have taken the Yelp
reviews dataset and the Indonesia tourism destination
dataset and converted them to graph format considering
explicitly the relation or interaction between the users given
to the travel items (destinations) using user and place unique
mappings. Here the users and the places are represented as
nodes and the interaction ie., the user rating to a place is
considered as the edge or the link between the nodes. As we
wanted to recommend the destinations that the user is most
interested in, we have only considered the edges whose
ratings are >=4 for a range of 0-5 ratings (user rating to a
place).
We have taken this data and split it to test, train, and
validation data sets. The ratio of data split is 90, 5, 5 for
train, validation, and test sets respectively. We have used
the train dataset for training the LightGCN algorithm and
validated our results using the validation set. Finally, the
rating prediction scores or recommendations of places or
destinations for a user are provided using the trained initial
embeddings on the test dataset.

Fig 2: Yelp Reviews sample graph data

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 11 ~

Fig. 2 represents the graph data for the yelp reviews dataset.
Here the nodes are users and the destinations (places) and
the edges represent the rating (link) for a user to an item
(place).

Hyperparameter Tuning: For the Travel or trip
recommendation system, we have performed
hyperparameter tuning for both yelp reviews and Indonesia
tourism destination datasets for the LightGCN model. For

this, we have varied each hyperparameter individually and
observed the performance metrics and finalized the
parameters based on overall performance.

Hyperparameter tuning for Yelp Reviews Dataset: Upon
training the LightGCN model, we have varied the number of
message-passing layers for the validation set to observe the
performance evaluation.

Fig 3: Varying message passing layers for Yelp reviews dataset

From Fig.3, we can observe that when using three message- passing layers the precision, recall, and NDCG metrics show
better performance.

Fig 4: Hyperparameter tuning for lambda loss for the yelp dataset

In Fig. 4 we have varied loss regularization function lambda and could observe better performance metric results for lambda
value 1e-7.

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 12 ~

Fig 5: Hyperparameter tuning for batch size for the yelp dataset

We have varied the batch size in Fig. 5 and observed that
there is not much difference in varying the batch size
metrics.
We have similarly performed hyperparameter tuning for the
Indonesia Tourism destination Dataset. The hyperparameter
tuning is as shown below:

Hyperparameter tuning for the Indonesia Tourism
destination Dataset: For Message-passing layers variation-
hyperparameter tuning, Fig. 6 has better performance
metrics for two message-passing layers for this dataset.

Fig 6: Hyperparameter tuning for message passing layers Indonesia dataset

In Fig. 7 we have performed Lambda loss regularization variation and observed that for lambda value 1e-3 the performance is
better than other values.

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 13 ~

Fig 7: Hyperparameter tuning for loss function Indonesia dataset

We have varied the batch size in Fig. 8 and observed the performance is better with batch sizes 256 and 1024.

Fig 8: Hyperparameter tuning for Indonesia tourism dataset for batch sizes

Upon performing the hyperparameter tuning we have finalized the parameters as shown below:

Table 2: Final LightGCN Parameters

Final LightGCN Training parameters Yelp Review Dataset Indonesia Tourism dataset
Iterations 10,000 10,000
Batch size 1024 1024

Learning rate (LR) 1.00E-03 1.00E-03
Iterations per evaluation 200 200

Iterations per LR 200 200
Lambda (Loss Regularization) 1.00E-07 1.00E-03

Message passing Layers 3 2

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 14 ~

Loss function graphs

Fig 9: Loss function graphs

Fig. 9 shows the loss function plot. We have observed a
significant decrease in the validation and training dataset
loss.
Our code is available at
https://github.com/SravaniPrakki/TravelRecommendation_
ML

Results
In this section, we mention the comparison of LightGCN
results for travel recommendations with Matrix
Factorization and Random baseline. We also mention the

sample place recommendations suggested to the user using
LightGCN.

Comparison of Results: We have performed a comparison
of the evaluation metrics for the three methods LightGCN,
Matrix Factorization, and Random baseline. From the below
figures, Fig. 10 and Fig. 11, we observe that the graph-based
model LightGCN has better performance results for all the
metrics Recall@20, Precision@20, and NDCG@20 in
comparison to the non-graph-based traditional MF model
and Random baseline.

Table 3: Performance evaluation for yelp reviews dataset

Test Set
Methods Recall@20 Precision@20 NDCG@20

LightGCN 0.03404 0.00252 0.01319
Matrix Factorization 0.01274 0.00083 0.00664

Random Baseline 0.00125 9e-5 0.00043
Validation Set

Methods Recall@20 Precision@20 NDCG@20
LightGCN 0.03167 0.0025 0.01201

Matrix Factorization 0.01367 0.00089 0.00767
Random Baseline 0.00196 0.00014 0.00085

Train Set
Methods Recall@20 Precision@20 NDCG@20

LightGCN 0.03511 0.00771 0.01908
Matrix Factorization 0.01452 0.0026 0.00993

Table 4: Performance evaluation for Indonesia tourism destination dataset

Test Set
Methods Recall@20 Precision@20 NDCG@20

LightGCN 0.09195 0.00655 0.03492
Matrix Factorization 0.04195 0.00379 0.0162

Random Baseline 0.02586 0.00207 0.00963
Validation Set

Methods Recall@20 Precision@20 NDCG@20
LightGCN 0.07135 0.00445 0.03011

Matrix Factorization 0.0468 0.00274 0.01405
Random Baseline 0.0234 0.00205 0.01039

Train Set
Methods Recall@20 Precision@20 NDCG@20

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 15 ~

LightGCN 0.04955 0.0305 0.04002
Matrix Factorization 0.04349 0.02683 0.03419

From the comparison of results, we can observe that
LightGCN has achieved very good performance in
comparison to Matrix Factorization and Random Baseline.
We have achieved a 167% increase in precision, a 203%

increase in recall, and a 98.6% NDCG increase in metrics in
comparison to Matrix Factorization.
The comparison of results for travel-based recommendations
is shown below:

Fig 10: Comparison results for yelp reviews

Fig 11: Comparison results for Indonesia tourism dataset

Sample Results: Top K place recommendations for a given user using the LightGCN approach for both the yelp review and
Indonesia tourism datasets:

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 16 ~

Fig 12: Sample results

Summary
We have implemented a graph-based model- “LightGCN”
and a non-graph-based traditional model- “Matrix
Factorization” for travel or trip recommendation systems on
yelp reviews and Indonesia tourism datasets. We have
performed training and hyperparameter tuning for both
LightGCN and Matrix Factorization models for travel or
place recommendations. We have evaluated our LightGCN
model for place recommendations using Precision@K,
Recall@K, and NDCG@K metrics and generated results
after training the model to predict the top destination
recommendations for a given user. We then compared our
results of the LightGCN approach with the Matrix
Factorization and Random baseline approaches.
We achieved better performances [167% increase in
precision, 203% increase in recall, and 98.6% NDCG
increase in metrics] for the LightGCN model (graph-based
approach) compared to the Matrix Factorization approach
for travel or place recommendations.

Future Work
In this work, we have implemented a transductive model.
Here the learned embeddings cannot be generalized to
unknown values or values other than the implemented
dataset. We can extend this approach to adapt to inductive
models such as IGMC (Inductive Graph Matrix
Completion) which can be generalized to any unknown or
unseen data. This experiment also focuses on user-item
interaction for link-based predictions. The model could be
further extended to include node-level and graph-level
predictions. This work can also be extended to implement
other Graph models such as Graph sage and Graph attention
neural networks to observe the metrics for travel
recommendations.

References
1. He, Xiangnan, et al. Lightgcn: Simplifying and

powering graph convolution network for
recommendation." Proceedings of the 43rd
International ACM SIGIR conference on research and
development in Information Retrieval; c2020.

2. Bentaleb A, El Bouzekri El Idrissi Y, Ait Lahcen A. A
Review on Content Based Recommender Systems in
Tourism. In: Motahhir, S., Bossoufi, B. (eds) Digital
Technologies and Applications. ICDTA 2021. Lecture
Notes in Networks and Systems. 2021, 211. Springer,
Cham. https://doi.org/10.1007/978-3-030-73882-2_48

3. Jia Z, Yang Y, Gao W, Chen X. User-Based
Collaborative Filtering for Tourist Attraction
Recommendations, IEEE International Conference on
Computational Intelligence & Communication
Technology; c2015. p. 22-25.
DOI:10.1109/CICT.2015.20.

4. Chen Lei, et al. Multi-view graph attention network for
travel recommendation. Expert Systems with
Applications. 2022;191:116234.

5. https://towardsdatascience.com/graph-neural-network-
gnn-architectures- for-recommendation-systems-
7b9dd0de0856

6. https://neptune.ai/blog/graph-neural-network-and-some-
of-gnn- applications

7. https://www.kaggle.com/datasets/aprabowo/indonesia-
tourism- destination

8. https://data.world/brianray/yelp-
reviews/workspace/file?filename=yelp_training_set_rev
iew.csv

9. https://medium.com/stanford-cs224w/lightgcn-with-
pytorch-geometric- 91bab836471e

10. Berg Rianne Van Den, Thomas Kipf N, Max Welling.
Graph convolutional matrix completion. arXiv preprint.

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 17 ~

2017;ar14:1706.02263.
11. Xin Haoran, et al. Out-of-town recommendation with

travel intention modeling. Proceedings of the AAAI
Conference on Artificial Intelligence; c2021, 35(5).

12. Wang Meng. Applying Internet information technology
combined with deep learning to tourism collaborative
recommendation system. Plos one.
2020;15(12):e0240656.

13. Kbaier Mohamed Elyes Ben Haj, et al. A Personalized
Hybrid Tourism Recommender System. IEEE/ACS 14th
International Conference on Computer Systems and
Applications (AICCSA); c2017. p. 244-250.

14. Wang Xiang, et al. Neural graph collaborative filtering.
Proceedings of the 42nd international ACM SIGIR
conference on Research and development in
Information Retrieval; c2019.

15. Zhang Muhan, Yixin Chen. Inductive matrix
completion based on graph neural networks. arXiv
preprint arXiv:1904.12058; c2019.

16. Koren, Yehuda, Robert Bell, and Chris Volinsky.
Matrix factorization techniques for recommender
systems. Computer. 2009;42(8):30-37.

17. https://en.wikipedia.org/wiki/Matrix_factorization_(reco
mmender_syste ms)

18. https://medium.com/@m_n_malaeb/recall-and-
precision-at-k-for- recommender-systems-
618483226c54

19. https://towardsdatascience.com/recommender-systems-
matrix- factorization-using-pytorch-
bd52f46aa199https://medium.com/stanford-
cs224w/lightgcn-with-pytorch-geometric-
91bab836471e

20. https://github.com/pyg-
team/pytorch_geometric/issues/1876

21. https://jovian.ai/aakanksha-ns/anime-ratings-matrix-
factorization/v/10?utm_source=embed

22. https://towardsdatascience.com/recommendation-
system-matrix- factorization-d61978660b4b

23. https://github.com/XingxingHuang/Machine_Learning_
Practices/blob/m
aster/ML_python_implementation/matrix_factorization.
py

24. https://datascience.stackexchange.com/questions/40590/
does-a-matrix- factorization-recommendation-engine-
use-user-item-related-features

25. https://d2l.ai/chapter_recommender-systems/mf.html
26. https://datascience.stackexchange.com/questions/40590/

does-a-matrix- factorization-recommendation-engine-
use-user-item-related-features

27. https://beckernick.github.io/matrix-factorization-
recommender/

28. https://github.com/beckernick/matrix_factorization_rec
ommenders

29. https://everdark.github.io/k9/notebooks/ml/matrix_facto
rization/matrix_ factorization.nb.html

30. https://machinelearningmastery.com/precision-recall-
and-f-measure-for- imbalanced-
classification/#:~:text=Once%20precision%20and%20r
ecall%20have,)

31. %20%2F%20(Precision%20%2B%20Recall)
32. https://www.google.com/search?q=precision%2C+recall

+formula&rlz=
1C1CHBF_enUS938US938&oq=precision%2C+recall+
formula&aqs=c

hrome.69i57j0i512j0i22i30l8.6756j0j7&sourceid=chro
me&ie=UTF-8

33. https://medium.com/towards-data-science/factorization-
machines-for- item-recommendation-with-implicit-
feedback-data-5655a7c749db

34. https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.preci
sion_recall_fsco re_support.html

35. https://machinelearningmastery.com/precision-recall-
and-f-measure-for- imbalanced-classification/

36. https://medium.com/@MohammedS/performance-
metrics-for- classification-problems-in-machine-
learning-part-i-b085d432082b

37. https://www.analyticsvidhya.com/blog/2020/04/confusi
on-matrix- machine-learning/

38. https://www.analyticsvidhya.com/blog/2018/06/compre
hensive-guide- recommendation-engine-python/?

39. https://docs.fast.ai/tutorial.collab.html
40. https://github.com/EsratMaria/Improved-Movie-

Recommendation- System-with-KNN-and-Cosine-
Similarity/blob/master/Recommendation%20System%2
0with%20KNN

41. %20and%20Cosine%20similarity.ipynb
42. https://towardsdatascience.com/collaborative-filtering-

on-anime-dataset- using-fastai2-130ae32fe433
43. https://medium.com/unpackai/metrics-for-classification-

in-fastai- ab110fd8fbe8
44. https://forums.fast.ai/t/getting-metrics-on-validation-

set/79827/4
45. https://towardsdev.com/compute-performance-metrics-

f1-score- precision-accuracy-for-cnn-in-fastai-
959d86b6f8ad

46. https://medium.com/unpackai/metrics-for-classification-
in-fastai- ab110fd8fbe8

47. https://towardsdatascience.com/collaborative-filtering-
on-anime-dataset- using-fastai2-130ae32fe433

48. https://forums.fast.ai/t/assertion-
error/79647?replies_to_post_number=2

49. https://stackoverflow.com/questions/60449931/fastai-
cuda-error-device- side-assert-triggered

50. https://colab.research.google.com/drive/1Nd9alFlfNvlFr
TRGFYFhmLG
kP7Iy1kle?usp=sharing#scrollTo=OxyQhPsJe2ZN

51. https://medium.com/stanford-cs224w/friend-
recommendation-using- graphsage-ffcda2aaf8d6

52. https://colab.research.google.com/drive/1Nd9alFlfNvlFr
TRGFYFhmLG kP7Iy1kle?usp=sharing

53. https://colab.research.google.com/drive/1uF6sLL65HjW
h6mgL4wTyC Aq8xtxoXhgw

54. https://colab.research.google.com/drive/1phV7VouGG0
T-
7eBtHo_44bDCRB9xJyPA#scrollTo=o2P3zYR8Q8EX

55. https://colab.research.google.com/drive/1pl9F02cFbGD
CBWUhUcylF9
qWj27zNMzv#scrollTo=nPgvoKnlyEGN

56. https://github.com/AntonioLonga/PytorchGeometricTut
orial/blob/main/ Tutorial1/Tutorial1.ipynb

57. https://colab.research.google.com/drive/1h3-
vJGRVloF5zStxL5I0rSy4ZUPNsjy8?usp=sharing

58. https://medium.com/@benalex/implement-your-own-
music- recommender-with-graph-neural-networks-
lightgcn-f59e3bf5f8f5

59. https://colab.research.google.com/drive/1EdgZaTb8mtc
4vEnedNNtRyg Z_Ls-jQqy?usp=sharing

http://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence http://www.computersciencejournals.com/ijcai

~ 18 ~

60. https://colab.research.google.com/drive/1EdgZaTb8mtc
4vEnedNNtRyg Z_Ls-
jQqy?usp=sharing#scrollTo=3gxBd579e8Ox

61. https://www.youtube.com/watch?v=AQU3akndun4&t=
154s

62. https://medium.com/stanford-cs224w
63. https://medium.com/analytics-vidhya/how-to-use-

google-colab-with- github-via-google-drive-
68efb23a42d

64. https://www.jianshu.com/p/767950b560c4
65. https://medium.com/@jn2279/better-recommender-

systems-with- lightgcn-a0e764af14f9
66. https://chowdera.com/2022/04/202204211353274448.ht

ml
67. http://ethen8181.github.io/machine-

learning/recsys/4_bpr.html
68. https://discuss.pytorch.org/t/issue-about-bpr-

loss/134840
69. https://medium.com/@bhawna7374/movie-

recommendation-system- with-neural-networks-and-
collaborative-filtering-explicit-feedback- d2afaafef350

70. https://discuss.pytorch.org/t/problem-with-dimension-in-
graph-neural- networks/127296

71. https://colab.research.google.com/drive/1KKugoFyUdy
dYC0XRyd dcROzfQdMwDcnO?usp=sharing

72. https://towardsdatascience.com/building-a-
recommendation-system- using-neural-network-
embeddings-1ef92e5c80c9

73. https://github.com/bhawnapaliwal/Collaborative-
Filtering-with-Neural-
Network/blob/master/COLLABORATIVE%20FILTERI
NG%20USING

74. %20NEURAL%20NETWORKS%20FOR%20EXPLIC
IT%20%20FEE
DBACK%20RECOMMENDATION%20SYSTEMS.p
df

75. https://colab.research.google.com/drive/1KftirIug97suNj
0rrd0f7IHF8lc7 RLNa

76. https://colab.research.google.com/drive/1eAgTLR4lCy2
_j8kNDZA7Ol
Z7b0G8CETY#scrollTo=lG6dE0LoS4D0

77. https://colab.research.google.com/github/sparsh-
ai/coldstart-
recsys/blob/main/docs/L281872_Cold_Start_Recommen
dations.ipynb#s crollTo=3XcP6T_wjzz8

78. https://colab.research.google.com/drive/17Eq-
hjU0fSUmSRqBK6TjZNCfDaNy_DLR#scrollTo=14-
NSkJ2VHGd

79. https://colab.research.google.com/github/google/eng-
edu/blob/main/ml/recommendation-
systems/recommendation- systems.ipynb
https://www.youtube.com/@machinelearningalchemy9
621/videos

80. https://www.youtube.com/@welcomeaioverlords

http://www.computersciencejournals.com/ijcai

