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Abstract 
The manufacturing sector now has access to data at a level never before possible. This information 
could comprise sensor readings from the assembly line, information about the surrounding area, 
machine tool settings, etc. These data may also take many different forms and have a variety of 
interpretations. The manufacturing sector and its grip on the expanding manufacturing data repositories 
have a lot of potential to change in the future thanks to recent developments in some fields. But there 
are many different machine learning algorithms, concepts, and strategies. This provides a hurdle to the 
use of these potent technologies for many industrial specialists and may hinder them from taking 
advantage of the enormous volumes of data that are becoming accessible. After a detailed study, we 
can say that machine learning (ML) is now a potent tool for many applications in (intelligent) industrial 
systems and smart manufacturing, and that its importance will only grow in the future. There is a need 
for cooperation between a number of academic fields, including computer science, industrial 
engineering, mathematics, and electrical engineering. Both enormous opportunity and substantial risk 
are generated by this relationship. 
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Introduction 
The manufacturing sector now has access to data on a scale that has never been seen before 
(Chand & Davis, 2010) [14]. These information can have a wide range of forms, connotations, 
and characteristics, including sensor data from the assembly line, environmental information, 
machine tool settings, etc (Davis et al., 2015) [21]. There are other names for this 
phenomenon, including Smart Manufacturing (USA), Industry 4.0 (Germany), and Smart 
Factory (South Korea). The proliferation and accessibility of vast volumes of data are 
frequently referred to as "big data" (Lee et al., 2013) [67]. It is possible to stably improve 
process and product quality since data is readily available, such as data pertaining to quality 
(Elangovan et al., 2015) [27]. It has been acknowledged, nevertheless, that having too much 
information may also be troublesome and even detrimental because it might, for example, 
cause attention to be diverted from the primary problems or causes or result in slow or 
inaccurate decisions regarding the best course of action (Lang, 2007) [67].  
The manufacturing sector and its grip on the expanding manufacturing data repositories have 
a lot of potential to change in the future thanks to recent developments in some fields. But 
there are many different machine learning algorithms, concepts, and strategies. This provides 
a hurdle to the use of these potent technologies for many industrial specialists and may 
hinder them from taking advantage of the enormous volumes of data that are becoming 
accessible. 
Therefore, the paper tries to offer an overview of the many machine learning fields and 
propose an overall architecture. It also argues from a manufacturing viewpoint why machine 
learning is a suitable and promising solution for today's and future difficulties. 
The next section provides an overview of the issues that manufacturing is now experiencing. 
This demonstrates how effective machine learning is as a tool for manufacturers to address 
these issues directly. 
 
Challenges of the manufacturing domain 
The importance of the manufacturing sector cannot be emphasised, despite the fact that it is 
well-established. Some industrialized economies have seen a decline in the manufacturing 
sector's share of GDP during the previous few decades.  
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But in recent years, a lot of initiatives to revitalise the 

manufacturing sector have been made. Examples include the 

US and EU programmes "Factories of the Future" 

(European Commission, 2016) [29] and "Executive Actions 

to Strengthen Advanced Manufacturing in America" (White 

House, 2014) [103]. Manufacturing is currently experiencing 

challenges that are different from those in the past. 

There are numerous studies that describe the main 

challenges that global manufacturing faces. The majority of 

studies indicate that the following are the primary 

difficulties: (Thomas et al., 2012) [101]. 

 Using cutting-edge manufacturing methods 

 The creation of high-value products is becoming more 

and more crucial. 

 Making use of cutting-edge data management, artificial 

intelligence, and information technologies. 

 Sustainability, both in the methods of production 

(processes) and in the final goods. 

 Flexible and adaptive supply chains and business 

capabilities. 

 Innovation in processes, goods, and services. 

 Close industry-research partnership to adopt cutting-

edge technology. 

 Contemporary manufacturing management techniques. 

 

These important challenges underline the general trend 

toward increased complexity and dynamicity in the 

manufacturing industry. The product that will be produced, 

together with the enterprises' (business) practices and 

collaboration networks, appear to be getting more 

complicated on top of the actual production plans (Wiendahl 

& Scholtissek, 1994) [105]. Given how uncertainty affects the 

dynamic business climate in which today's manufacturing 

organisations operate, it is more challenging (Monostori, 

2003) [77].  

Machine learning techniques are good candidates for 

addressing some of the most pressing issues facing today's 

complex industrial systems. These data-driven systems must 

first be able to recognise highly complex and nonlinear 

patterns in data from a range of sources and data types in 

order to forecast, predict, detect, classify, and perform 

regression. After that, the unprocessed data is converted into 

feature spaces, or models, which are subsequently applied to 

the processes. 

The sections that follow give a brief overview of the 

primary benefits and difficulties of machine learning 

applications in relation to manufacturing, as well as those 

applications' prerequisites and difficulties. The state of 

machine learning today is then examined, this time with an 

emphasis on manufacturing-related applications. A 

structuring of several machine learning approaches and 

algorithms is established and provided within that context. 

 

Suitability of machine learning application with regard 

to today’s manufacturing challenges 

The terms used are briefly defined prior to determining 

whether ML is appropriate based on the previously 

mentioned requirements for a potential solution approach. 

According to Monostori, Hornyák, Egresits, and Viharos, 

machine learning can be used to solve a number of NP-

complete issues that frequently arise in the field of smart 

manufacturing (1998). 

Due to the availability of massive amounts of complicated 

data with little transparency as well as the improved 

usability and capability of ML tools over the preceding two 

decades, the use of ML approaches has expanded (Larose, 

2005) [63]. However, auxiliary factors such potential over-

fitting must be taken into account when applying (Widodo 

& Yang, 2007) [104]. Although it is doubtful given the 

strength of the algorithms, there are ways to reduce the 

dimensions if they turn out to be a problem. According to 

them, the projected results will be less affected by the 

reduction in dimensionality. Dimensionality is not a 

practical concern when using ML, and in this case, SVM, 

hence there is no need to lower dimensionality. This 

suggests that one might be a little more forgiving when 

including data from the production that at first looks 

superfluous but ends up being crucial. As was previously 

mentioned, this might have an immediate impact on the 

knowledge gap that is currently present (Alpaydin, 2010; 

Pham & Afify, 2005) [2, 84]. 

Manufacturing may be able to employ ML to extract 

patterns from current data sets that could serve as a 

foundation for predictions of how the system will behave in 

the future (Alpaydin, 2010; Nilsson, 2005) [2, 81]. The 

decision-making of the process owners may benefit from the 

new information (knowledge), or it may be automatically 

added to the system to improve it. This means that "the 

system designer need not anticipate and provide solutions 

for all likely situations”. 

ML methods are designed to extract knowledge from data 

that has previously been collected (Alpaydin, 2010; Kwak & 

Kim, 2012) [2, 61]. "Storage data only becomes useful when it 

is assessed and translated into knowledge that we may use, 

for example, to develop predictions," claims Alpaydin 

(2010) [2]. Where process checkpoints should be placed may 

also be affected by this (Wuest et al., 2014) [108]. Given the 

analytical power of ML techniques to extract information 

from data that was originally deemed to be useless, properly 

selecting checkpoints may be redundant, even when they 

make sense in terms of what data are pertinent. It might then 

be able to recognise more states and gather data on the 

entire production process. Investigating whether something 

is advantageous or not is crucial. There are no technical 

challenges in analysing the additional data because ML can 

handle high-dimensional data. Data acquisition challenges 

could still include the ability to gather the data in particular. 

Finding state drivers in settings with very high 

dimensionality is not thought to be difficult once the data 

are available. 

Since intelligence and learning are intimately related, as 

stressed by Monostori et al., (1996) [80] learning capability 

must be a requirement for intelligent industrial systems 

(1996). Regarding the limitations and difficulties the 

theoretical product state idea encounters, ML offers 

compelling arguments. The assessed needs and the 

aforementioned evaluations suggest that ML approaches are 

a suitable remedy. The great majority of requirements found 

are satisfactorily satisfied using ML. 

It is necessary to look more closely at the advantages and 

disadvantages of the different ML techniques in relation to 

the requirements. There are still a lot of additional problems 

to be solved, such how ML approaches might handle 

qualitative data. 

The following section highlights the advantages and 

challenges of machine learning use in manufacturing based 

on the previously stated needs. 
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Advantages and challenges of machine learning 

application in manufacturing 

Numerous process optimization, monitoring and control, 

and predictive maintenance applications in a variety of 

sectors have successfully used machine learning (ML) 

(Alpaydin, 2010) [2]. ML approaches can improve quality 

control optimization in manufacturing systems, particularly 

in "complex production environments where detection of 

the sources of errors is hard" (1993). However, it is typically 

found that ML applications are constrained, concentrating 

only on a small number of processes as opposed to the entire 

production system or software (Doltsinis, Ferreira, & Lohse, 

2012) [25]. 

There are many different ML methodology, tools, and 

techniques available, each with its own advantages and 

disadvantages. Machine learning has developed into a 

distinct field of study. This section's goal is to identify a 

solid machine learning strategy for usage in manufacturing. 

 

Advantages of machine learning application in 

manufacturing 

In the prior sections, one of the general benefits of ML was 

demonstrated, showing that it can resolve NP-complete 

issues, which are frequently encountered while dealing with 

optimization difficulties in intelligent manufacturing 

systems (Monostori et al., 1998) [79]. Because "the majority 

of engineering and industrial difficulties are data-rich but 

knowledge-sparse," machine learning (ML) offers a 

technique to improve domain expertise (Lu, 1990). This 

section discusses the benefits in an effort to generalize them 

to all MLs. It is generally acknowledged that ML, by 

reducing cycle time and scrap, enables resource utilization 

in a number of NP-hard manufacturing scenarios. The 

manufacture of semiconductors is a large-scale, intricate 

process, and machine learning offers strong tools for 

ongoing quality improvement (Monostori et al., 1998; Pham 

& Afify, 2005) [79, 84]. 

Some algorithms (like SVM and Distributed Hierarchical 

Decision Tree) perform better than others when dealing with 

high dimensionality (Bar et al., 2005; Lenca et al., 2010) [5, 

24]. As was already said, manufacturing may greatly benefit 

from machine learning algorithms that can handle highly 

dimensional data. Consequently, one benefit of ML 

application in production is the capacity to manage huge 

dimensionality. Another advantage of ML approaches is the 

enhanced use of algorithms made feasible by (often open 

source) programmes like Rapidminer. As a result, rapid 

parameter adjustments may be made to enhance 

classification performance, and the implementation can be 

(relatively) easily done in a variety of circumstances. 

The ability to learn from the dynamic system and, to some 

extent, automatically adapt to the changing environment is 

provided by machine learning algorithms in this situation, 

given how dynamic, unpredictable, and complicated 

industrial processes in particular are (Lu, 1990; Simon, 

1983) [71, 93]. Adaptation occurs relatively quickly and is 

nearly always quicker than traditional methods, depending 

on the ML algorithm. It may be possible to use ML in 

manufacturing to find patterns in existing data sets that 

could serve as the basis for forecasts of the system's future 

behaviour (Alpaydin, 2010; Nilsson, 2005) [2, 81]. The new 

data could either aid process owners in making wiser 

decisions or enhance the system as a whole. 

Kotsiantis (2007) [59] analyzed a variety of algorithms based 

on how well they performed in various industrial 

applications. Every problem is different, and every 

algorithm responds differently depending on the available 

data, the processed data, and the parameter choices. In a 

practical environment, the best algorithm must be compared 

to a range of alternatives. More information on this is 

provided in the section that follows. 

 

Challenges of machine learning application in 

manufacturing 

The gathering of pertinent data is a problem that frequently 

arises with ML applications in manufacturing. Along with 

accessibility, quality, and substance (do meta-data count, for 

example?), this is a constraint. The labelling of the 

accessible industrial data, such as whether or not the data 

are labelled, significantly affects how effectively ML 

algorithms perform. Some machine learning (ML) 

algorithms, for instance, may struggle with high-

dimensional data due to the amount of redundant and 

unneeded information that might affect how well the 

learning algorithms function (Yu & Liu, 2003) [111]. The 

majority of currently used machine learning approaches 

only work with input that has continuous and nominal 

values (Pham & Afify, 2005) [84]. How much depends on the 

method itself, parameter values, and other factors. One may 

argue that getting any data for most manufacturing studies, 

not just ML applications, is challenging because of things 

like security issues or a general lack of data collecting 

during the process. This emphasises the following issue as 

well as the growing importance of understanding the data 

while using ML.  

Depending on the demands of the method used, pre-

processing is frequently necessary after the accessible data 

have been collected. The results are significantly impacted 

by the data pre-processing. However, a variety of widely 

accessible, standardized technologies enable the most 

popular data normalisation and filtering pre-processing 

phases. It is also necessary to examine the training data for 

imbalance. As a result, some algorithms could find it 

difficult to train. A prevalent issue in industrial practice is 

the presence or lack of values for specific attributes from the 

data collection. The use of ML algorithms is hampered by 

these "missing values." There are numerous useful induction 

gadgets that could close the gap (Pham & Afify, 2005) [84]. 

For substituting missing values, each issue and subsequently 

used ML approach has unique specifications. The original 

data set is changed when missing values are substituted. The 

goal of the analysis is to minimise bias and other 

detrimental elements. Given how widespread this problem 

is, there are numerous studies and workable solutions (for 

example, in R) accessible (Graham, 2012) [39]. 

Choosing the appropriate machine learning method and 

algorithm is challenging but increasingly crucial (selection 

of ML algorithm). The multiplicity of cases and its needs 

which has benefits and drawbacks, despite efforts to explain 

"generic ML processes," which have both advantages and 

downsides (Hoffmann, 1990) [47]. There are many different 

alternative ML algorithms-or at least ML algorithm 

variants-out there, especially now that the use of ML in 

manufacturing is garnering more attention from 

practitioners and academia. Hybrid approaches, which 

combine multiple algorithms, are becoming more and more 

well-liked since they are thought to produce better results 

than "individual" applications of a single algorithm. This 
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makes the situation even more complicated (e.g. Lee & Ha, 

2009) [66]. There are several papers available that show how 

ML techniques work well for specific problems. The test 

findings are typically kept confidential at the same time. 

Due to this, it is challenging to examine the findings 

impartially and objectively and to draw a concluding 

comparison.  

In order to find a suitable method, it is necessary to examine 

past examples of the algorithms being applied to analogous 

challenges. In this context, the word "similar" refers to 

research problems with analogous specifications, such as 

those in different fields or disciplines. 

The interpretation of the findings presents another difficulty. 

When evaluating the findings, it is crucial to consider the 

parameters and parameter settings of the chosen method, the 

"intended outcome," the data, including any pre-processing, 

and the output format or representation. Certain more exact 

restrictions may have a major impact on how the results are 

understood (again, depending on the algorithm of choice). 

These include, for instance, resilience to over-fitting and 

bias and variance (thus, the bias-variance tradeoff) (Widodo 

& Yang, 2007) [104]. 

 

Structuring of machine leaning techniques and 

algorithms 

ML has grown through time into a broad and diverse field of 

study, as was already said. This has sparked the creation of 

numerous original sub-fields, algorithms, theories, and 

application domains. The relationships or established 

structures between the various sections are not universally 

acknowledged. Different academics opt for various 

organisational strategies to set up the field. The authors 

want to group the jobs and easily accessible algorithms in 

the ML domain of the DM in Figure 1 on the one hand and 

on the other. This structure emphasises the significance of 

distinguishing between task (what is the objective) and 

algorithm for the machine learning (ML) community (how 

can that goal be accomplished). But the overview in Figure 

1 is deficient because it ignores the commonly 

acknowledged division of ML techniques based on the 

feedback that is available in supervised, unsupervised, and 

RL. Monostori (2003) [77] described the three classes as 

follows: 

Unsupervised learning: Since there is no instructor, there is 

no evaluation [label] of the action. Assisted learning: A 

teacher provides the appropriate response (label). 

Less feedback is provided in reinforcement learning because 

the teacher simply assesses the action that was selected. 

Although the existence of this structure is widely 

acknowledged, it is still unclear what it involves and to 

which organisations these three classes actually belong. For 

example, supervised, unsupervised, and RL were mapped to 

components of neural networks (NN) in Pham and Afify's 

(2005) [84] study (Figure 2). Pham and Afify (2005) [84] draw 

attention to the fact that they exclusively concentrate on 

supervised categorization learning techniques. This would 

be in line with Lu's (1990) [71] assertion that supervised and 

unsupervised inductive learning are two different forms of 

inductive learning. Others distinguish between active and 

passive learning, asserting that the former refers to 

circumstances in which the learner has no control over the 

training set and the latter refers to learning problems or 

systems in which the learner "generally used to refer to a 

learning problem or system where the learner has some role 

in determining on what data it will be trained" (Cohn, 2011). 

It is clear that active learning is frequently required to 

address issues where obtaining labelled training data is 

challenging (costly and/or time-consuming). Active learners 

can do better than other learners with less training data since 

they can sequentially recognise valuable examples (Cohn, 

2011) [17]. Active learning has primarily been used in 

supervised machine learning (ML) applications, but it has 

also proved successful in several real-world (RL) 

applications (Cohn, 2011) [17]. 

For instance, Kotsiantis (2007) [59] only takes into account 

supervised classification approaches when classifying NN 

as a learning algorithm under supervised learning. On the 

other hand, RL and unsupervised learning can both benefit 

from the employment of NN algorithms (Carpenter & 

Grossberg, 1988; Pham & Afify, 2005) [12, 84]. When the idea 

at the top of the hierarchy is viewed as "Supervised ML" 

rather than the "Machine learning" they first specified, this 

largely agrees with Pham and Afify's (2005) [84] work. 

 

 
 

Fig 1: An overview of tasks and main algorithms in DM (Corne et al., 2012) [19]. 
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Fig 2: Classification of main ML techniques according to Pham and Afify (2005) [84]. 

 

The following is an illustration of how ML approaches and 

algorithms may be modified and extended: 

Figure 3 does not depict all algorithms and method 

adjustments. The goal is to demonstrate the intricate design 

and wide range of commonly used and popular ML 

approaches. When moving farther down the hierarchy, it 

may not always be easy to choose the main differentiation-

supervised, unsupervised, and RL-that is best appropriate 

for the task at hand. Additionally, it must be remembered 

that many methods can be integrated to increase 

classification accuracy (Bishop, 2006) [7]. "Most of the 

available machine-learning algorithms for producing 

multiple models may improve greatly on the accuracy of 

single models," claim Pham and Afify (2005) [4]. That raises 

the difficulty one must overcome while choosing an 

appropriate ML algorithm for a specific problem, which 

hinders comprehension (Pham & Afify, 2005) [84]. 

Numerous algorithms are useful for both supervised and 

unsupervised learning, which is another intriguing feature 

(in adapted form). 

Numerous algorithms and combinatory methods have a 

tendency to be customized for particular tasks. Because of 

this, it is challenging to compare them, particularly in terms 

of the problem at hand's categorization power. Chart 

comparisons like those in Kotsiantis can be used as a first 

indicator (2007). 

 

 
 

Fig 3: Structuring of ML techniques and algorithms. 

 

A more effective way to choose the best algorithm is to look 

for similar issues and compare the ML algorithm that was 

used to solve them with the outcomes. This is a fantastic 

place to start. A number of approaches can be used, and the 

outcomes for the targeted problem can be contrasted, once 

the algorithm has been used to address the issue and 

preliminary findings are available. The transition is 

(relatively) easy thanks to contemporary computing 

platforms that support multiple kernels. 

Below is a brief description of each to help you distinguish 

between supervised machine learning, reinforcement 

learning (RL), and unsupervised machine learning. Later, 

more in-depth discussions on supervised machine learning 

were held since it was found to be the best remedy for the 

problems and issues that industrial applications faced and 

because manufacturing data is usually tagged, making 

expert commentary readily available (Lu, 1990) [71]. 

 

Unsupervised machine learning 

It's also crucial to research unsupervised machine learning. 

Unsupervised learning, as contrast to supervised learning, 

does not receive guidance from a teacher or other expert. 

Based on factors including the conceptual cohesion of 

features, the approach is intended to identify clusters from 

current data (Lu, 1990) [71]. Kotsiantis was the first to put 

forth the hypothesis that unsupervised learning is most 

likely to take place when conditions are unlabeled (lack 

accurate outputs and known labels) (2007). In contrast to 

supervised learning, which focuses on classification, 

clustering aims to identify previously unknown classes of 

objects (Jain et al., 1999) [49]. In its simplest form, 

unsupervised machine learning is any ML procedure that 

attempts to learn structure without either a known output 

[for example, supervised ML] or feedback [for example, 

RL]. Clustering, association rules, and self-organizing maps 

are three typical instances of unsupervised learning 
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(Sammut & Webb, 2011) [89]. 

Unsupervised methods are becoming increasingly 

important, especially in the context of Big Data. The main 

presumption for training the algorithm is that experts who 

are competent about classifying states can contribute. The 

manufacturing use is comparable to this (Lu, 1990; 

Monostori, 2003) [71, 77]. So, the primary emphasis will be on 

supervised techniques. However, there may still be some 

benefits to unsupervised learning in manufacturing 

applications. The first possibility is that expert guidance 

may not always be available or wanted in the future. 

Another crucial factor to take into account is realizing 

hybrid solutions that combine the "best of both worlds," 

especially in the industrial sector, where the amount of 

unlabeled data is continually increasing (Kang et al., 2016) 
[53]. Finally, unsupervised techniques can be used to find 

outliers in industrial data, for instance, and already do so 

(Hansso et al., 2016) [43]. 

 

Reinforcement learning 

RL is defined as the contribution of the training data from 

the environment. A numerical reinforcement signal provides 

information on the system's performance during the specific 

turn (Kotsiantis, 2007) [59]. The student must figure out for 

themselves, rather than being told, which activities generate 

the best results, which is another distinctive trait (numerical 

reinforcement signal). This sets RL apart from the 

overwhelming majority of other ML techniques (Sutton & 

Barto, 2012) [99]. However, other academics claim that RL is 

"a specific kind of supervised learning" (Pham & Afify, 

2005) [84]. To differentiate RL issues from supervised 

learning issues, however, tagged examples of "good" and 

"poor" behaviour are not included (Stone, 2011) [96]. RL 

mimics how individuals learn by simulating a series of 

contextual interactions (Wiering & Van Otterlo, 2012). RL 

differs from unsupervised ML in that it exhibits a "reward 

signal" (Stone, 2011) [96]. In contrast to supervised learning, 

RL functions best when a trained supervisor is not present. 

An agent must have the ability to learn from interactions 

and its own experience in such an uncertain environment. 

This is when RL can be advantageous (Sutton & Barto, 

2012) [99]. 

It is thrilling and difficult that some acts may not have an 

immediate effect but instead may manifest later or even 

during a subsequent additional effort because RL depends 

on the feedback of activities. RL is typically characterized 

by stating a learning issue rather than specifying learning 

methods. Any approach that satisfies that requirement 

[could be regarded as] a reinforcement learning approach. 

The trade-off between exploration and exploitation is a very 

special challenge for RL. The agent must proactively test 

new tactics in order to "exploit" the behaviours it has 

learned to prefer and identify those it must "explore" in 

order to accomplish the goal (Sutton & Barto, 2012) [99]. 

According to Gönther et al. (2015) [40], there are currently 

very few examples of RL being successfully implemented in 

production. Modern industrial applications have access to 

professional counsel in the great majority of cases. So, even 

if RL can be used to manufacturing applications, the 

following mostly focuses on supervised methods. 

 

Supervised machine learning 

"Supervised ML," also known as "supervised machine 

learning," is defined as "learning from examples provided 

by an experienced external supervisor" in its most basic 

form. This is partly because (a) expert opinion is readily 

available and (b) the cases are labelled. One of the most 

well-known uses of supervised machine learning is in the 

manufacturing, monitoring, and control sectors (e.g. Pham 

& Afify, 2005 and Alpaydin, 2010;) [84, 2]. 

Data processing and teacher setup of the test and training 

data sets are just two of the processes that make up the usual 

supervised machine learning approach (Kotsiantis, 2007) 
[59]. Depending on the circumstance, the pertinent data are 

located and, if necessary, pre-processed. The training set's 

definition is essential since it has a big impact on how the 

classification process turns out. While defining the training 

data set commonly seems to come first, it is equally crucial 

to take the requirements of the algorithm selection into 

consideration. Some algorithms provide a feature known as 

"kernel selection" that enables the strategy to be changed 

depending on the particulars of the problem. This 

demonstrates the flexibility of ML applications and the 

range of issues they can solve. 

Because many algorithms have unique advantages and 

disadvantages when working with various data sets, data 

identification and preprocessing are both susceptible to 

problems (e.g. format, dimensions, etc.). Using the training 

data set, the algorithm of choice is trained. Typically, 70% 

of the data set is used for training, 20% is used for 

assessment (to change parameters like bias), and the 

remaining 10% is used for testing. In the part that follows, 

supervised learning algorithms are further discussed because 

they are now the most popular algorithms for manufacturing 

applications. In many manufacturing applications, the 

availability of "labels" based on quality checks is a crucial 

element. 

 

Supervised machine learning algorithms in 

manufacturing application 

The previously displayed images demonstrate a variety of 

supervised machine learning algorithms that are available. 

It's a big job to choose an algorithm that will work for the 

current industrial research problem. First, to assess how 

broadly applicable an ML method is to the criteria, more 

generic comparisons (such those made by Kotsiantis 2007) 
[59] may be employed. It is unacceptable to select an ML 

algorithm purely on the basis of such a theoretic and 

thorough selection, even though the majority of research 

concerns show the particular characteristics of ML 

algorithms as well as their modified "siblings." The 

following phase is a detailed examination of prior uses of 

ML algorithms on research areas with comparable needs in 

order to select the best ML method for the situation at hand. 

The primary factor for the selection process is how well the 

research topics match the demands that have been identified. 

The research topics should not be related to one another's 

field (updating the learning set). To assist the reader in 

reducing the number of potentially applicable techniques, a 

concise assessment of the key benefits and drawbacks of the 

various ML algorithms is provided.  

Training a computer to choose a performance function 

defining the relationship between inputs and outputs 

(without being explicitly coded) is known as supervised 

learning in the theory (Evgeniou, Pontil, & Poggio, 2000) 
[31]. "How well the selected function generalises, or how 

well it estimates the outcome for previously unobserved 

inputs," is the primary issue of SLT (Evgeniou et al., 2000) 
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[31]. On the theoretical underpinnings of SLT, other useful 

algorithms, such as NNs, SVMs, and Bayesian models, are 

built (Brunato & Battiti, 2005) [10]. The wide range of 

potential application settings and application tactics is one 

of the primary benefits of SLT algorithms (Evgeniou et al., 

2002) [32]. SLT occasionally permits using fewer samples 

(Koltchinskii et al., 2001) [58]. SLT is also superior to other 

methods for dealing with issues like observer variability 

(Margolis et al., 2011) [74]. Additionally, SLT helps to 

prevent computational complexity by easing up on some 

design issues, even though it does not entirely eliminate it 

(Koltchinskii et al., 2001) [58]. However, it is acknowledged 

that there is limited area for dependent and redundant 

attributes (Kotsiantis, 2007) [59]. 

Artificial neural networks, often known as NNs, operate 

similarly to how the brain does. When converted to a 

computer or artificial system, the brain's extraordinary 

abilities, such as vision and speech recognition, may be 

useful in engineering applications (Alpaydin, 2010) [2]. 

Parallel processing allows NN to simulate the central 

nervous system's decentralized "computation". On this NN, 

the present ML research is dependent (Nilsson, 2005) [81]. 

One could argue that the use of NN in modern applications 

is at the representational and algorithmic levels (Alpaydin, 

2010) [2]. NN are used for a variety of industrial tasks, such 

as semiconductor manufacturing, as well as for a variety of 

issues, such as process control (Wang et al., 2005) [102], 

emphasising their major benefit: their wide use (Pham & 

Afify, 2005) [84]. "Offers great accuracy in most 

applications," say Manallack and Livingstone (1999 [72], 

"but sometimes suffer from over-fitting the training data"). 

SVM and NN both need a big sample size to obtain the high 

accuracy, though (Kotsiantis, 2007) [59]. Another issue with 

NN that is related to high-variance algorithms is over-fitting 

(again, something like SVMs) (Kotsiantis, 2007) [59].  

The SLT outlined previously serves as the theoretical 

underpinning for SVM, a relatively new and extremely 

promising machine learning method. Due to its all-around 

good performance, capacity for high accuracy, and capacity 

for processing high-dimensional, multivariate data sets, 

SVM has garnered growing interest in recent years. Cortes 

and Vapnik (1995) [20] created SVMs. SVM is a "stable and 

highly accurate intelligent classification technique 

particularly suited for structure-activity relationship 

research," according to Burbidge et al (2001) [11]. SVM is a 

useful technique for the STL theoretical framework 

(Cherkassky & Ma, 2009) [15]. SVMs have a track record of 

effectively resolving non-linear issues (Li, Liang, & Xu, 

2009) [68]. To adapt to different circumstances and demands, 

SVM can be paired with a variety of kernels, including NNs 

and Gaussian (Keerthi & Lin, 2003) [54]. 

Two main theories have demonstrated their ability to 

forecast the development of the fundamental classifiers. 

Utilizing sequential ensemble approaches, which feed the 

output of one base classifier into the next base classifier, is 

one way to improve the output. Bagging, on the other hand, 

is the concurrent modification of the underlying classifiers 

that results in distinct models. A well-known illustration of 

a bagging strategy is the Random Forest collection of 

randomly selected tree predictors (Breiman, 2001) [9]. 

Random Forest first chooses a feature subset at random 

from the feature space before using a typical split selection 

technique inside the chosen feature subset.  

 

Application areas of supervised machine learning in 

manufacturing 

Several ML algorithms are available, as was demonstrated 

in the section prior to this one. Each of them has particular 

advantages and disadvantages. In a few specific situations, 

the effective uses of machine learning in industrial systems 

are highlighted using SVMs, a well-known example of a 

supervised machine learning algorithm. 

Monitoring with SVM is common in the industrial sector 

(Chinnam, 2002) [16]. SVM is often and effectively utilized 

in a variety of domains, including defect identification, tool 

wear, and monitoring tool/machine condition (Azadeh et al., 

2013) [4]. SVMs have also been effectively used for 

manufacturing quality control (Ribeiro, 2005) [8]. 

Image recognition, which includes face and character 

recognition, is an SVM application field that connects to 

manufacturing applications (Wu, 2010). Aydaş and Ekici 

(2010) [13] state that this could be used in manufacturing to 

recognise (classify) damaged products (for instance, surface 

roughness). Handwriting classification is one of the 

additional uses (Scheidat, Leich, Alexander, & Vielhauer, 

2009) [91]. Another use of SVM optimization is in time 

series forecasting (Guo et al., 2008) [41]. 

SVMs are frequently employed in a variety of industries, 

including manufacturing, image recognition, and the 

medical sector. SVM has various applications in this field, 

but the research of cancer stands out. Two other medical use 

cases are listed by Burbidge et al. as medication design and 

microcalcification detection (El-naqa et al., 2002) [28]. 

Rule extraction, polymer classification, and credit rating are 

some more uses (Borin et al., 2006) [8]. These illustrations 

from various sectors and optimization issues show how 

adaptable and widely used the SVM technique is. There are 

many effective ML applications for manufacturing that are 

now being employed in industrial applications all around the 

world, as was demonstrated by the SVM technique.  

 

Conclusion and outlook 

This research article emphasises the issues with modern 

industrial systems, such as their growing complexity, 

dynamic nature, high dimensionality, and chaotic structures. 

Below, it was examined what limitations and advantages 

machine learning has from the perspective of manufacturing 

before suggesting a structure for the broad topic of machine 

learning and giving an introduction to its core principles. To 

categorise the numerous methods and applications, the 

framework makes a distinction between supervised machine 

learning, reinforcement learning, and unsupervised machine 

learning. SVMs, a supervised machine learning technique, 

are then shown to be beneficial in manufacturing. The 

evaluation highlights the field's adaptability and wide range 

of possible uses. 

Machine learning will see a sharp growth in its use, 

particularly in manufacturing, as a result of the quick 

advancement of algorithms, the availability of data (due, for 

instance, to affordable sensors and the shift toward smart 

manufacturing), and the increase in computing power. 

Currently, supervised algorithms are used in the majority of 

applications related to manufacturing. The exponential 

development in data availability brought on by better and 

more sensor technologies along with more awareness, 

however, may cause unsupervised techniques (including 

RL) to become increasingly prominent in the future. There 

are currently hybrid tactics in use that offer "the best of both 
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worlds." This fits with the current emphasis on 

breakthroughs utilizing big data. We can safely say that 

machine learning (ML) is now a potent tool for many 

applications in (intelligent) industrial systems and smart 

manufacturing, and that its importance will only grow in the 

future. There is a need for cooperation between a number of 

academic fields, including computer science, industrial 

engineering, mathematics, and electrical engineering. Both 

enormous opportunity and substantial risk are generated by 

this relationship. 
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