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Abstract 
IMUs, or inertial measuring units, are used in a variety of medical applications. The measurement 
accuracy of an IMU, however, might deteriorate with time, necessitating re-calibration. Tedaldi et al. 
offered an IMU calibration approach in their study from 2021 that doesn't call for expensive external 
precision equipment or laborious methods. As a result, the sensors may be re-calibrated by employees 
or end users without an advanced understanding of inertial measurement by positioning them in a 
variety of acceptable but loosely defined orientations. Adaptations for low noise accelerometers, a 
calibration assistance object, and packet loss correction for wireless calibration are just a few of the 
enhancements to Tedaldi's technique that we provide in this paper. On our custom-built IMU platform, 
we used the updated calibration technique, and we checked the consistency of the results across many 
calibration cycles. We examined how the calibration result accuracy declines when fewer calibration 
orientations are employed in order to reduce the time required for recalibration. We discovered that 
N=12 distinct orientations are enough to obtain a very successful calibration, and that adding additional 
orientations only slightly enhanced the calibration. Comparing this to Tedaldi's suggested range of 37 
to 50 orientations, it is a huge improvement. As a result, we were able to shorten the time needed to 
calibrate a single IMU from about 5 minutes to less than 2 minutes without compromising any 
significant calibration accuracy. 
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1. Introduction 
Inertial measurement units (IMUs) are utilised in a broad range of medical and sporting 
applications, such as fall detection in senior patients, injury rehabilitation, and training 
progress tracking [1, 3]. Inertial sensors have also been used for even more difficult tasks, such 
full-body human motion capture [4, 5]. Correct calibration of each unit is essential in situations 
when exact measurements and orientation estimations are needed, such as in sports or motion 
capture. The device will no longer adhere to its declared accuracy limitations when the 
characteristics of the integrated inertial sensors change over extended periods of time or 
under variable temperatures, and a re-calibration is required. Users may re-calibrate their 
IMUs in the field using the approach suggested by Tedaldi et al. [6] in 2021 without the need 
for any specialized and often costly reference tools, such as right angles, turntables, or high 
precision servo platforms [7]. We encountered several issues when we put this strategy into 
practice utilizing our proprietary wireless IMU technology, which is explained in Section III. 
We were able to resolve the problems as indicated in Section IV after carefully examining 
the algorithm and related processes. The calibration technique described by Tedaldi et al. [6] 
employs unprocessed accelerometer and gyroscope data. The original implementation is in 
C++ [8], but for our tests, we utilised Jianzhu Huai's MATLAB implementation [9], which 
source code we found to be simpler to use, comprehend, and change. 

 

2. Related work 

Ren et al. [10] in 2021 put out the idea of spinning the IMU on an inclined plane in order to 

use the accelerometer to determine the heading. This calibration method does not need any 

extra equipment. Tedaldi's algorithm's basic idea is similar to the underlying one, but the 

calibration technique is more involved than just placing the IMU in several random 

orientations. Although Tedaldi's previous work was noted and remarkable calibration 

accuracy was claimed by Ren et al., they did not compare the accuracy of the two 

approaches. 
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A similar strategy to ours was published in 2022 by Peng et 

al. [11], who also employed a 3D-printed icosahedron to 

position the IMU during calibration. On an integrated 

microcontroller, they construct a streamlined calibration 

process based on an iterative weighted Levenberg-

Marquardt algorithm. However, they ignore axis 

misalignment and assume that a pricey multi-axis precision 

servo stage is available for gyroscope calibration. This 

renders the technique somewhat ineffective since the 

accelerometer might be calibrated on the same platform. 

 

3. IMU platform 

We created our own wireless sensor device so that we could 

have an IMU development platform that could be fully 

customized. The accuracy, size, weight, and power 

consumption of the sensor data were all optimized for the 

development platform. Texas Instruments' System-on-Chip 

(SoC) CC2652R1 was selected as the microcontroller (C). It 

has a 32-bit ARM Cortex M4F core, an ARM Cortex M0 

Bluetooth Low Energy (BLE) transceiver, and a 2.4 GHz 

processor.  

 

 
Created a wireless IMU 

 

Fig 1: Left: PCB of the 6th generation of our in-house de 

 

Right: A 3D-printed case that houses the PCB (IMU #9, 

case version 11), a low-power sensor-controller core for 

communicating with peripheral components without 

needing the main core, and the core. A single-chip IMU 

sensor with a triaxial accelerometer and gyroscope (BMI160 

by Bosch), a second high-precision accelerometer 

(ADXL355BEZ by Analog Devices), and a magnetic sensor 

are all included in the wireless IMU (MMC3416xPJ by 

MEMSIC). The magnetic sensor allows for distortion and 

gyroscope bias drift correction in magnetic, angular rate, 

and gravity (MARG) sensing applications. For floor-level 

sensing, a barometric pressure sensor (BMMP388 by 

Bosch) is incorporated. The embedded 120mAh lithium-ion 

battery may be charged through wired data transfer with the 

help of a Serial-to-USB interface (FT230XQ). A four-layer 

printed circuit board (PCB) with two component sides and 

measurements of 34.5 mm by 18mm is used to implement 

component placement and routing. Figure 1 shows the 

populated PCB and its 3D-printed container. The raw sensor 

data is fused using a mad wick method that was made 

available for either IMU or MARG sensing applications [12]. 

All sensors are sampled at a rate of 100Hz. If desired, sensor 

fusion may be carried out directly on the microcontroller, 

which greatly decreases the amount of data that has to be 

transferred when compared to sending raw sensor data. As a 

result, many wireless IMUs may operate concurrently at 

100Hz frame rates. 

 

4. Calibration improvements 

A. Orientation Helper Object 

The calibration algorithm requires at least nine different 

orientations to construct a well-defined optimization 

problem [6, 13]. In Tedaldi’s original work, the IMU is placed 

in 37 ≤ N ≤ 50 distinct static positions, each held for 1-4s. 

Without support, a cuboid IMU case can only be placed on 

six faces – or less if some are rounded, as seen in Figure 1. 

In [6], Tedaldi et al. show an IMU with a cable attached 

resting on the edge of a slab, which is a very unstable 

position for an IMU weighing only a few grams. The rigid 

cable can move the lightweight IMU by tiny amounts, 

preventing the algorithm from identifying static phases. To 

avoid these problems in our evaluation, we use wireless 

transmission (see also Section IV-D) and a 3D-printed 

 

 
 

Fig 2: The icosahedral enclosure allows the IMU to rest in 

 

20 different orientations. It can hold the IMU case (orange) 

and has a whole opposite for pushing the IMU back out. 

Icosahedral orientation helper object based on Tim 

Edwards’ Opens CAD model [14] as shown in Figure 2. The 

3Dprinted regular icosahedron has a distance of 66mm 

between opposing vertices. The enclosed IMU is press-fit 

into a slot on one of the triangular faces and can be released 

by pushing through a hole on the opposing face. The 

orientation helper object allowed us to place the IMUs to be 

calibrated in 20 easily reproducible orientations with at least 

42 degrees rotation between them and without interfering 

cables. This enabled a more systematic approach to 

capturing calibration sequences, as explained in Section V. 

 

B. Improved static phase selection 

Running the calibration algorithm [9] on our captured 

sequences of the low noise accelerometer revealed a 

weakness of the static phase detection algorithm. This issue 

was found in both the original C++ code [8] and the 

MATLAB implementation [9]. The variance of the long 

static phase in the beginning ςinit is used as a baseline for 

finding a suitable variance threshold for the short static 

segments later in the sequence. However, ςinit is so small 

due to the low noise floor of the ADXL355 that even tiny 

perturbations in the short sequences are above the maximum 

threshold of 10ςinit variance. Increasing the maximum 

variance threshold factor from 10 to 225 solved this problem 

for our case but revealed another problem: v In Tedaldi’s 

algorithm, the best static phase threshold (an integer 

multiple k • ςinit) is determined by performing a nonlinear 

least-squares minimization of the accelerometer cost 

function L (θacc) for each k and selecting the k with the 

smallest residual. As stated in [6], this approach does not 

require parametrization, but favors calibration sequences in 

which the same orientation is repeated multiple times. Thus, 

the algorithm would select a k for which the long sequence 

at the beginning was split into multiple smaller segments of 
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length>1s because the variance ς (t) was too close to kςinit, 

crossing the threshold multiple times. This problem can be 

fixed by rejecting segments where the acceleration vector 

direction did not change relative to the previously accepted 

segment, minimizing the number of redundant segments. 

However, the selection of the k with the minimum residual 

was still susceptible to the slightest perturbation of the 

accelerometer data. When truncating the calibration 

sequence even slightly, the algorithm would seemingly at 

random select very different values of k, which led to wildly 

varying numbers of segments: Fewer segments for smaller k 

because static phases would be broken into multiple parts, 

which were then rejected for being shorter than 1s. Thus, we 

modified the static phase selection to always select the k 

which produced the largest number of usable static 

segments, excluding segments that were duplicates or too 

short. If there are multiple k, we select the one with the 

lowest residual.  

 

C. Division by zero 

The MATLAB implementation [9] contained a division by 

zero in the function from Omega to Q when the angular 

rates were [0, 0, and 0] in a single packet. This is a very 

unlikely event due to the measurement noise, but it occurred 

in at least one calibration sequence, so we corrected the 

issue. 

 

D. Wireless Packet Loss Correction 

For data transmission between IMU and host PC, we used 

Bluetooth 5.0 Low Energy (LE) Generic ATT tribute Profile 

(GATT) notifications since they provide a significant 

improvement in data transmission speed compared to 

indication messages [15]. Even though the Bluetooth link 

layer L2CAP provides acknowledgments and 

retransmissions, any wireless transmission includes a risk of 

packet loss. Depending on the application, the loss of a 

single quaternion may not be critical, but the loss of raw 

gyroscope data in a calibration sequence will result in 

integration errors. Loss of accelerometer data is not critical 

because it is only sampled in static periods. 

Thus, we implemented simple and a power-efficient erasure 

code (EC) for forward error correction of lost gyroscope 

samples in order to prevent this problem. The EC data Ei is 

the same size as the raw gyroscope data i (6 bytes) and 

consists of the XOR of the previous M raw gyroscope 

values Ei = Gi−1LGi−2L...LGi−M. This allows the receiver 

to reconstruct arbitrary packet losses in a window of length 

M when followed by a sequence of M correctly received 

packets. Computing Ei for a new packet consists of only two 

XOR operations: One for adding the next Gi−1 and one for 

removing the oldest element Gi−M from the running XOR 

sum. Apart from the running sum Ei, only an additional ring 

buffer for storing Gi...Gi−M+1 is required on the IMU. 

 

4. Evaluation 

With each of our four operational IMUs (units #1, #2, #6 

and #9), we recorded five calibration sequences with N 37 

in order to identify the bare minimum necessary number of 

static positions N for a calibration precise enough. We 

captured the packet index, ADXL355 acceleration, BMI160 

acceleration, and BMI160 gyroscope measurements for each 

sequence. The first static phase lasted for 40s, and thereafter 

there were static intervals of around 3s. We arranged the 

icosahedron on all 20 faces of the first 20 orientations, with 

increasing numbers pointing upward. After the increasing 

sequence, we randomly selected faces on which to position 

the icosahedron until at least 37 postures were captured. We 

deleted all IMU #9 results for N>34 as there were only 34 

valid postures in one calibration session. Using our modified 

MATLAB code, we fully calibrated each IMU for each 

sequence that was taken with a maximum of N, yielding 4 

times 5 sets of the 18 calibration parameters (= [acc, gyro], 

as reported in [6], for each IMU. We determined the average 

parameters for the five sets for each IMU, and these values 

served as the ‘reference' calibration coefficients for that 

IMU. After that, we gradually cut short each sequence, 

lowering the effective N = Neff. We ran a second calibration 

run using Neff segments for each trimmed sequence and 

then calculated the mean absolute difference for each group 

of coefficients to compare the resultant Neff to mean. This 

eliminates the necessity for an exact "gold standard" 

reference of the calibration parameters and enables 

evaluation of how the calibration quality degrades with 

decreasing N, compared to the "complete" calibration 

suggested by Tedaldi. 

By simply mounting the IMUs in four different horizontal 

positions on the five orthogonal sides of their casing, we 

were able to record an extra set of calibration runs without 

the need of an icosahedron. These sequences allowed for a 

successful calibration, but since the calibration error for 

these runs was substantially higher than the mean, we did 

not include the data. 

 

5. Results 

The evaluation's findings are shown in Figures 3, 4, and 5. 

As the conclusion is the same for the BMI160 

accelerometer, we only show the calibration run results 

using the ADXL355 values. The accelerometer-related. 

 

 
Number of orientations N 
 

Fig 3: Mean absolute difference of accelerometer bias estimation 

to θ mean for varying N. Mean of 5 calibration runs for each IMU 

except imu tk Test Data (only 1 calibration run). Units are 1mg = 

9.807 × 10−3 m/s2
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(a) Gyroscope axis misalignment estimation error over N   (b) Accelerometer axis misalignment estimation error over N 

 

Fig 4: Axis misalignment estimation errors (including non-orthogonality) for different N, when compared to θ mean. Typical mean absolute 

misalignment angles of θ mean for our IMUs were in the range between 0.4 and 0.6 degrees

 

 
(a) Gyroscope scaling factor estimation error over N  (b) Accelerometer scaling factor estimation error over N 

 

Fig 5: Scaling factor estimation errors for different numbers of orientations N, when compared to θ mean. Values are given in 

percent of the measured quantity (angular rate and acceleration respectively). 

 

Calibration, with greater N, we see a modest decrease in 

inaccuracy. The errors near N=12 orientations, though, are 

already less than 0.1% of the mean values for scaling and 

misalignment. The calibration error for bias is already very 

close to the ADXL355's noise floor (200 g at 100 Hz). 

Therefore, it is debatable whether the extra effort required 

for three orientations is necessary. The outcomes are 

significantly more evident for the gyroscopes: When more 

positions are taken into account after sufficient orientations 

have been collected to calculate a successful calibration, the 

accuracy barely improves at all. Because the mean is 

calculated from just one calibration run rather than five, the 

calibration sequence is essentially compared to itself, which 

causes the results for imu tk Test Data to be unreasonably 

low. Despite this, the major finding for N also applies to this 

IMU. 

 

Conclusions and outlook 

In this study, we described enhancements to a calibration 

method for wireless IMUs that doesn't need for pricey 

calibration apparatus. By fixing mistakes that only 

sometimes occurred and increasing the static phase 

identification while employing low-noise accelerometers, 

the processes described in the first paper by Tedaldi et al. [6] 

and its MATLAB implementation [9] were enhanced. Our 

findings suggest that a dodecahedron would probably be 

enough, but a low-priced, low-accuracy 3D-printed 

icosahedron functioned as the sole supplementary, optional 

calibration equipment and allowed for simple placement of 

the IMU in 20 different attitudes. The calibration process' 

evaluation revealed that positioning According to Tedaldi et 

al.'s advice [6], the IMU in N=12 distinct positions already 

produces a very small error for the accelerometer N and a 

minimal error for the gyroscope calibration. The 

methodology given by Tedaldi et al. will be implemented in 

the next step directly on the CC2652R1 SoC of our internal 

wireless IMU, using a strategy similar to Peng et al [11].'S 

method without compromising calibration for the gyroscope 

and axis misalignment. It will be necessary to fully redesign 

the algorithm's structure for this purpose, optimising for 

computational complexity, programme size, and RAM 

utilisation. 
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