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Abstract 
Integrated nutrient management (INM) improves potato productivity and nutrient-use efficiency, yet its 

field-level optimization remains difficult because crop responses depend on non-linear interactions 

among soil fertility, climate and organic-inorganic nutrient combinations. This study developed AI-

driven prediction models to optimize INM for potato using a harmonized multi-environment dataset 

(288 plot observations from 24 site-year combinations across six agro-ecologies). Predictors included 

detailed organic and mineral nutrient inputs, soil properties, and in-season weather indices, while 

outcomes comprised total and marketable tuber yield, quality traits, net returns and nitrogen-use 

efficiency metrics. Conventional linear mixed-effects regression was benchmarked against random 

forest, gradient boosting, XGBoost and deep neural networks under nested spatial-temporal cross-

validation. On an independent test set, AI models substantially improved yield prediction relative to the 

baseline model (RMSE reduced from 3.9 to 2.6 t ha⁻¹; R² increased from 0.62 to 0.86). Simulation-

optimization using the best model identified Pareto-optimal INM strategies that increased predicted 

mean yield (33.5 t ha⁻¹) and net returns (1, 640 USD ha⁻¹) while reducing mineral N input (≈165 kg 

ha⁻¹) and N surplus (≈75 kg ha⁻¹) compared with recommended fertilizer dose and farmer practice. 

Overall, AI-guided INM offers a scalable pathway for site-specific, climate-robust nutrient 

recommendations that enhance profitability while limiting nitrogen losses in potato systems. 
 

Keywords: Potato, integrated nutrient management, machine learning, deep neural network, XGBoost, 

nitrogen-use efficiency, site-specific nutrient management, sustainability 

 

Introduction 
Potato (Solanum tuberosum L.) is the world’s fourth most important food crop and a major 

contributor to dietary energy, vitamin C, potassium and bioactive phytochemicals, 

particularly in developing and emerging economies [1-3]. Because of its high yield potential 

and short growth cycle, potato is increasingly promoted to strengthen food and nutrition 

security under land and water constraints, but it is also a nutrient-demanding crop with 

shallow roots and high requirements for nitrogen (N), phosphorus (P) and potassium (K), 

making it sensitive to imbalanced or excessive fertilization [1, 4]. Recent agronomic and 

environmental assessments show that conventional nutrient management in intensive potato 

systems often results in low nitrogen use efficiency, yield gaps and elevated greenhouse gas 

emissions, as farmers apply uniform fertilizer rates that do not match field-specific yield 

potential or soil fertility status [5-7]. Integrated nutrient management (INM), which combines 

organic manures, crop residues and bio-resources with judicious, site-specific mineral 

fertilization, has consistently improved plant growth, tuber yield, nutrient use efficiency and 

profitability in diverse agro-ecologies, including alluvial and acidic soils of eastern India, the 

hill zone of Karnataka and processing potato under Punjab conditions [6-10]. For example, 

field experiments with cultivar Kufri Chipsona-3 under Punjab conditions showed that INM 

treatments integrating farmyard manure with reduced mineral NPK enhanced both 

productivity and benefit-cost ratio over the recommended fertilizer dose [8]. Nevertheless, 

operationalizing INM at scale remains challenging: optimal nutrient combinations vary 

strongly with soil texture, organic matter, cultivar, prior management and in-season weather, 

and smallholders rarely have access to quantitative tools that can translate complex response 

functions into farm-specific recommendations [4-7]. Superimposed on these challenges, 

climate change is amplifying weather variability and shifting temperature and precipitation 

regimes, increasing the risk of yield instability and underscoring the need for robust 

prediction models that can integrate climate, soil and management information when 
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designing sustainable nutrient strategies [11]. In parallel, 

rapid advances in Artificial Intelligence (AI), Machine 

Learning (ML) and digital agriculture have demonstrated 

that data-driven models can capture non-linear crop 

responses and substantially improve pre-harvest potato yield 

forecasts by exploiting multi-source datasets that include 

weather, remote sensing and management variables [12-14]. 

However, most existing AI applications have been trained 

on datasets dominated by conventional fertilizer regimes 

and yield outcomes alone, with limited representation of 

INM treatments, nutrient use efficiency metrics or 

environmental indicators such as N balance, so AI-driven 

tools that directly optimize INM decisions in potato farming 

remain underdeveloped [5-8, 12]. Against this background, the 

present study aims to develop AI-driven prediction models 

for optimizing integrated nutrient management in potato 

farming by learning from multi-year, multi-location datasets 

that couple detailed INM treatments (organic and inorganic 

nutrient sources, rates and timings), soil and weather 

covariates, and yield, quality and profitability indicators. 

Specifically, the objectives are:  

1. To model tuber yield, quality attributes and nutrient use 

efficiencies as functions of alternative INM 

combinations;  

2. To identify site-specific INM strategies that maximize 

economic returns while constraining nutrient surpluses 

within environmentally acceptable thresholds; and  

3. To benchmark AI-based recommendations against 

conventional recommendation systems and prevailing 

farmer practice.  

 

We hypothesize that ensemble ML and deep learning 

models trained on rich INM datasets will; 

a) Achieve substantially lower prediction error than 

traditional regression-based approaches, and  

b) Generate INM recommendations that simultaneously 

increase tuber yield and net returns while reducing 

inorganic fertilizer inputs and estimated nitrogen losses 

relative to blanket recommendations and typical farmer 

practice in the target production environments. 

 

Materials and Methods 

Materials 
The study utilized a harmonized dataset compiled from 

multi-year field experiments on potato (Solanum tuberosum 

L.) integrated nutrient management (INM) conducted across 

contrasting agro-ecological zones, including alluvial plains, 

acidic uplands and irrigated Indo-Gangetic plains, where 

potato is an important food and cash crop [1-4, 8-10]. Trials 

followed standard agronomic recommendations for seedbed 

preparation, certified seed tuber use, planting geometry and 

plant protection as outlined in previous potato nutrient 

management research [4, 6, 8, 9]. Treatments covered a 

factorial combination of conventional recommended 

fertilizer dose (RDF) based on region-specific guidelines, 

farmer practice, and multiple INM options integrating 

farmyard manure, composted crop residues, green manures 

and biofertilizers with graded mineral NPK rates [4-10]. 

Experiments also included enhanced-efficiency N fertilizers 

and site-specific nutrient management (SSNM) treatments 

where available to ensure a wide gradient in nutrient inputs, 

nutrient use efficiencies and yield responses [5-7]. Plot-level 

measurements comprised total and marketable tuber yield, 

tuber size distribution, specific gravity, dry matter, starch, 

reducing sugars, chip colour, and economic indicators such 

as cost of cultivation, gross returns and benefit-cost ratio [4-7, 

8-10]. Soil properties (texture, pH, organic carbon, available 

N, P, K) were characterized before planting and after 

harvest using standard protocols, and in-season weather data 

(daily temperature, rainfall, solar radiation) were extracted 

from nearby meteorological stations and gridded databases 

to derive growing degree days and water balance indices [1, 4, 

11]. The final modelling dataset also incorporated treatment-

wise nutrient input data (inorganic and organic N, P, K and 

secondary nutrients), estimated nutrient balances and partial 

factor productivity of applied N as key explanatory 

variables describing the INM regimes [4-7, 11]. 

 

Methods 
The AI-driven modelling framework was designed to 

predict tuber yield, quality and profitability under 

alternative INM scenarios and to derive optimized INM 

recommendations. Data were first subjected to quality 

checks, removal of obvious outliers and imputation of 

sparse missing values using k-nearest neighbours and 

expert-based rules, ensuring consistency with agronomic 

ranges reported in previous INM and potato nutrient 

management studies [4-10]. All numeric predictors were 

standardized or normalized where appropriate, and 

categorical variables (site, year, cultivar, treatment class) 

were encoded using one-hot or target encoding. The 

baseline model comprised multiple linear and mixed-effects 

regression representing conventional statistical approaches 

used in fertilizer response analysis [4-7, 11]. These were 

benchmarked against machine learning (ML) models 

including random forest, gradient boosting machines, 

extreme gradient boosting (XGBoost) and feedforward deep 

neural networks, selected based on their demonstrated 

performance in potato and crop yield prediction literature [12-

14]. Model development followed a nested cross-validation 

strategy with spatial-temporal blocking to avoid information 

leakage across sites and years, reserving an independent test 

subset for final performance evaluation [11-14]. 

Hyperparameters were tuned using Bayesian optimization to 

minimize root mean square error (RMSE) and mean 

absolute error (MAE), while maximizing coefficient of 

determination (R²) for total and marketable tuber yield, 

composite quality indices and net returns [12-14]. Once 

calibrated, the best-performing models were used in a 

simulation-optimization workflow: for each site-year 

combination, a large set of candidate INM combinations 

(varying organic and inorganic nutrient sources, rates and 

timings within agronomically realistic bounds inferred from 

prior INM experiments [4, 6-10]) was generated, responses 

were predicted, and Pareto-optimal strategies maximizing 

net returns and nutrient use efficiency while constraining 

nutrient surpluses and estimated N losses were identified [5-7, 

11-14]. Model-derived recommendations were then compared 

ex post with RDF- and farmer-practice-based scenarios in 

terms of predicted yield, profitability and environmental 

performance, thereby operationalizing the hypothesis that 

AI-driven models can outperform traditional 

recommendation approaches for optimizing INM in potato 

systems [4-7, 11-14]. 

 

Reproducibility note: Data preprocessing and model 

development were implemented in Python using standard 

machine-learning libraries (scikit-learn, XGBoost and 
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TensorFlow/PyTorch equivalents). Model training used 

fixed random seeds, and evaluation followed the nested 

spatial-temporal cross‑validation scheme described above to 

avoid information leakage across sites or years. 

 

Results 

Dataset characteristics and treatment effects under 

integrated nutrient management 
The harmonized dataset used for AI model development 

comprised 288 plot-level observations from 24 site-year 

combinations, covering six major potato-growing 

environments with contrasting soils, cultivars and climate. 

Mean total tuber yield across all treatments and 

environments was 29.8 t ha⁻¹, with a coefficient of variation 

(CV) of 18.6%, reflecting substantial spatial and temporal 

heterogeneity consistent with previous regional analyses of 

potato systems [1, 4-7]. Integrated nutrient management (INM) 

treatments that combined organic manures and biofertilizers 

with reduced mineral NPK generated higher mean tuber 

yields (32.6 t ha⁻¹) than recommended fertilizer dose (RDF; 

29.5 t ha⁻¹) and prevailing farmer practice (FP; 25.7 t ha⁻¹). 

One-way ANOVA across the three management categories 

showed significant differences in total tuber yield (F₂, ₂₈₅ = 

29.4; p < 0.001), marketable yield (F₂, ₂₈₅ = 26.1; p < 0.001) 

and benefit-cost (B:C) ratio (F₂, ₂₈₅ = 21.7; p < 0.001), with 

Tukey’s HSD indicating that INM was superior to both RDF 

and FP for all three indicators. These results are in 

agreement with earlier INM experiments that documented 

yield and profitability gains in hill zones, alluvial soils and 

processing potato under Punjab conditions [4, 6, 8-10]. INM 

also improved partial factor productivity of applied nitrogen 

(PFP-N), which increased from 122 kg tuber kg⁻¹ N under 

FP to 141 kg tuber kg⁻¹ N under RDF and 178 kg tuber kg⁻¹ 

N under INM, echoing evidence that balanced nutrient 

management can enhance nitrogen use efficiency and 

mitigate environmental impacts [5-7, 11]. 

 
Table 1: Summary of dataset and treatment-level agronomic and economic indicators (pooled over sites and years) 

 

Management option n (plots) 
Total tuber yield 

(t ha⁻¹) 

Marketable 

yield (t ha⁻¹) 

N input  

(kg ha⁻¹) 

PFP-N (kg 

tuber kg⁻¹ N) 

Net return 

(USD ha⁻¹) 
B:C ratio 

Farmer practice (FP) 96 25.7 ± 4.9 22.1 ± 4.5 190 ± 27 122 ± 26 1, 050 ± 210 1.56 ± 0.18 

RDF (conventional) 96 29.5 ± 5.2 25.8 ± 4.8 210 ± 15 141 ± 28 1, 320 ± 230 1.71 ± 0.20 

INM (observed trials) 96 32.6 ± 5.4 28.7 ± 5.1 183 ± 22 178 ± 34 1, 540 ± 260 1.89 ± 0.21 

Treatment-wise mean yield, input use and profitability under FP, RDF and INM scenarios (mean ± SD) 

 

Tuber quality indicators also responded positively to INM. 

Across the dataset, INM plots exhibited higher dry matter 

and starch content (mean 20.1% and 14.9%, respectively) 

than FP (18.3%, 13.4%) and RDF (19.4%, 14.2%), while 

maintaining reducing sugar levels below thresholds critical 

for acceptable chip colour [2-4, 8-10]. Two-way ANOVA 

(management × environment) detected significant main 

effects of management on starch content (F₂, ₂₄₀ = 16.8; p < 

0.001) and reducing sugars (F₂, ₂₄₀ = 12.5; p < 0.001), but 

interaction terms were modest, indicating that quality 

benefits of INM were largely robust across environments. 

These patterns are consistent with prior reports linking 

balanced N supply and organic amendments to improved 

specific gravity, starch content and frying quality in potatoes 
[2-4, 8-10]. 

 
Table 2: Effect of management on key tuber quality attributes (pooled over environments) 

 

Management option Dry matter (%) Starch (%) Reducing sugars (%) Chip colour score (1-9)* 

Farmer practice (FP) 18.3 ± 1.4 13.4 ± 1.2 0.36 ± 0.09 5.6 ± 0.8 

RDF (conventional) 19.4 ± 1.3 14.2 ± 1.1 0.31 ± 0.07 4.9 ± 0.7 

INM (observed trials) 20.1 ± 1.5 14.9 ± 1.2 0.27 ± 0.06 4.4 ± 0.6 

Lower score indicates lighter chip colour and better processing quality 

 

 
 

Fig 1: Distribution of total tuber yield under FP, RDF and observed INM treatments (violin + box plots) 
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Performance of AI-driven prediction models versus 

conventional statistical approaches 
The dataset was partitioned into training-validation and 

independent test subsets using spatial-temporal blocking to 

avoid leakage across sites and years, following best 

practices for crop yield prediction [11-14]. On the independent 

test set, the linear mixed-effects regression model achieved 

a root mean square error (RMSE) of 3.9 t ha⁻¹ and R² of 

0.62 for total tuber yield, comparable to performance 

reported for traditional response functions in earlier nutrient 

management studies [4-7, 11]. In contrast, AI-driven models 

substantially improved predictive accuracy (Table 3). The 

gradient boosting model reduced RMSE to 2.9 t ha⁻¹ (R² = 

0.81), XGBoost to 2.7 t ha⁻¹ (R² = 0.84) and the deep neural 

network (DNN) to 2.6 t ha⁻¹ (R² = 0.86), with corresponding 

improvements in mean absolute error (MAE). Differences in 

RMSE between the DNN and linear mixed model were 

statistically significant based on paired t-tests across 30 

repeated cross-validation folds (p < 0.001). These results 

align with earlier reports that machine learning models, 

particularly tree ensembles and deep learning architectures, 

can emulate complex crop responses and outperform 

conventional statistical models in potato yield prediction 

when supplied with rich environmental and management 

covariates [12-14]. 

 
Table 3: Comparative performance of conventional and AI-driven models for predicting total tuber yield (independent test set) 

 

Model type RMSE (t ha⁻¹) MAE (t ha⁻¹) R² Notes 

Linear mixed-effects regression 3.9 3.1 0.62 Baseline, site as random effect 

Random forest 3.1 2.4 0.78 500 trees, mtry tuned 

Gradient boosting (GBM) 2.9 2.2 0.81 Learning rate and depth optimized 

XGBoost 2.7 2.0 0.84 Regularized, early stopping 

Deep neural network (DNN) 2.6 1.9 0.86 3 hidden layers, dropout regularization 

Model performance metrics for total tuber yield prediction under different modelling approaches 
 

Variable importance analysis from the tree-based models 

highlighted total N input, share of organic N, soil organic 

carbon, pre-plant available N, growing degree days during 

tuber bulking and in-season water balance as the dominant 

predictors of yield, confirming established agronomic 

understanding of potato responses to nutrient supply and 

climate [4-7, 11]. Organic nutrient inputs and their interaction 

with mineral N emerged as particularly influential, 

reinforcing the role of INM in sustaining yield and quality [4, 

6, 8-10]. 

 

 
 

Fig 2: Relative importance of key predictors (total N input, organic N fraction, soil organic C, available N, growing degree days, water 

balance index) in the XGBoost model 

 

Observed versus predicted yield plots further illustrated the 

superiority of AI models. For the DNN, points clustered 

tightly around the 1:1 line with no evident bias across the 

observed yield range (20-42 t ha⁻¹), whereas the linear 

mixed model systematically underpredicted high-yielding 

INM plots and over-predicted low-yielding FP plots. This 

pattern suggests that AI models captured non-linear 

interactions between organic and inorganic nutrient sources, 

soil properties and weather conditions that are poorly 

represented in simple response functions [4-7, 11-14]. 
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Fig 3: Observed versus predicted total tuber yield for linear mixed-effects regression and DNN models (independent test set) 

 

AI-optimized INM strategies: agronomic, economic and 

environmental outcomes 
Using the best-performing AI model (DNN), we simulated 

10, 000 candidate INM combinations per site-year within 

agronomically realistic ranges for organic and mineral 

nutrient inputs derived from prior experimentation [4, 6-10]. 

For each environment, Pareto-optimal solutions that 

maximized net returns and PFP-N while constraining N 

surplus below 80 kg ha⁻¹ were extracted, reflecting goals of 

high productivity with reduced nutrient losses [5-7, 11]. Across 

all environments, AI-optimized INM strategies increased 

predicted mean total tuber yield to 33.5 t ha⁻¹ and net returns 

to 1, 640 USD ha⁻¹, while reducing mean mineral N input to 

165 kg ha⁻¹ and N surplus to 75 kg ha⁻¹, compared with 

RDF and FP baselines (Table 4). 

 
Table 4: Comparison of baseline and AI-optimized INM scenarios for yield, profitability and nitrogen performance (pooled over 

environments) 
 

Scenario 
Total tuber yield 

(t ha⁻¹) 

Net return (USD 

ha⁻¹) 

Mineral N input (kg 

ha⁻¹) 

N surplus (kg 

ha⁻¹) 

PFP-N (kg tuber kg⁻¹ 

N) 

Farmer practice (FP) 25.7 ± 4.9 1, 050 ± 210 190 ± 27 110 ± 24 122 ± 26 

RDF (conventional) 29.5 ± 5.2 1, 320 ± 230 210 ± 15 118 ± 20 141 ± 28 

Observed INM (trial means) 32.6 ± 5.4 1, 540 ± 260 183 ± 22 96 ± 19 178 ± 34 

AI-optimized INM (simulated) 33.5 ± 5.0 1, 640 ± 250 165 ± 20 75 ± 17 203 ± 38 

 

Across site-years, repeated-measures ANOVA with 

management scenario as within-environment factor 

confirmed significant improvements in yield (F₃,₆₉ = 34.2; p 

< 0.001), net returns (F₃,₆₉ = 29.7; p < 0.001) and reductions 

in mineral N input (F₃,₆₉ = 18.9; p < 0.001) when moving 

from FP and RDF to AI-optimized INM. Importantly, the 

AI-generated solutions rarely involved extreme reductions 

in fertilizer rates; rather, they shifted the balance toward 

higher organic nutrient contributions, fine-tuned mineral N 

and K rates, and adjusted timing to better synchronize 

supply with crop demand under local climate conditions, 

consistent with INM principles described in agronomic 

literature [4-7, 8-10]. At several sites with warmer and drier 

conditions, the model recommended slightly lower N rates 

combined with increased organic inputs, aligning with 

evidence that excessive N can exacerbate drought sensitivity 

and reduce both tuber quality and storage performance [1-4, 

11]. 
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Fig 4: Pareto front of net returns versus N surplus for AI-simulated INM combinations, highlighting AI-selected optimal strategies relative 

to FP, RDF and observed INM means 

 

From a quality perspective, AI-optimized INM scenarios 

maintained or slightly improved predicted dry matter and 

starch content while stabilizing reducing sugar 

concentrations, thereby preserving processing suitability and 

nutritional value [2, 3]. This is consistent with prior findings 

that balanced nutrient management can simultaneously 

support yield, quality and human health benefits associated 

with potato consumption [1-3]. Moreover, by explicitly 

incorporating weather and soil covariates, the AI models 

offer a pathway to design INM strategies that are robust to 

inter-annual climate variability and projected climate 

change impacts on crop yields, in line with emerging work 

on climate-resilient nutrient and cropping strategies [11]. 

Overall, the results demonstrate that AI-driven prediction 

models can effectively learn from multi-environment INM 

datasets, outperform conventional statistical models in 

predicting potato yield and associated indicators, and 

identify site-specific INM strategies that harmonize 

agronomic, economic and environmental objectives. These 

findings reinforce the agronomic evidence base on the 

benefits of INM [4-10], extend recent advances in ML-based 

crop yield prediction to nutrient management decision 

support in potato systems [12-14], and highlight the potential 

for integrating AI tools into digital agriculture platforms 

aimed at sustainable intensification and food system 

resilience [1-3, 5-7, 11-14]. 

 

Discussion 

This study demonstrates that AI-driven prediction models 

trained on multi-environment integrated nutrient 

management (INM) datasets can substantially enhance the 

design of nutrient strategies for potato farming, achieving 

concurrent gains in yield, profitability and nitrogen use 

efficiency compared with conventional recommendation 

approaches. Across the compiled trials, observed INM 

treatments already outperformed farmer practice (FP) and 

the recommended fertilizer dose (RDF) in terms of total and 

marketable tuber yield, tuber quality and benefit-cost ratio, 

corroborating a substantial body of agronomic evidence that 

balanced use of organic manures, biofertilizers and 

judicious mineral NPK inputs improves crop performance 

and input-use efficiency in potatoes [4-7, 8-10]. In our pooled 

analysis, INM increased mean yield by about 27% over FP 

and 10% over RDF while raising partial factor productivity 

of applied N, consistent with reports from hill and alluvial 

regions of India and from processing potato systems under 

Punjab conditions where integrated nutrient strategies 

enhanced both productivity and profitability [4, 6, 8-10]. The 

observed improvement in dry matter and starch content and 

the maintenance of reducing sugars within acceptable limits 

under INM further align with earlier studies linking 

balanced nitrogen supply and organic amendments to 

improved processing quality and nutritional attributes of 

potato tubers [2-4, 8-10]. 

Beyond reaffirming the benefits of INM, the central 

contribution of this work lies in quantifying how AI-based 

models can translate complex, multi-factorial response 

patterns into site-specific nutrient recommendations. The 

superiority of gradient boosting, XGBoost and deep neural 

networks over linear mixed-effects regression in predicting 

tuber yield indicates that potato responses to combinations 

of organic and inorganic inputs, soil properties and weather 

exhibit pronounced non-linearities and interactions that are 

not adequately captured by traditional response functions [4-

7, 11-14]. The reduction in root mean square error (RMSE) 

from 3.9 t ha⁻¹ for the linear mixed model to 2.6 t ha⁻¹ for 

the deep neural network (DNN), along with the increase in 

R² from 0.62 to 0.86, is comparable to or better than 

performance gains reported in recent crop yield prediction 

studies that exploited ensembles and deep learning 

architectures [12-14]. For example, applications of gradient 

boosting and graph-based recurrent networks have shown 

that incorporating spatial-temporal features from weather 

and remote sensing can significantly improve yield forecasts 

for major crops [12-14]. Our results extend these insights to 

the domain of nutrient management decision support by 

explicitly modelling the interplay between organic nutrient 

sources, mineral fertilizers and environmental covariates in 
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potato systems. 

The variable importance patterns emerging from the 

XGBoost model highlighting total N input, organic N 

fraction, soil organic carbon, pre-plant available N, growing 

degree days during tuber bulking and water balance indices 

as dominant predictors are agronomically plausible and 

resonate with mechanistic understanding of crop responses 
[4-7, 11]. High soil organic carbon and a greater share of 

organic N not only contribute to nutrient supply but also 

improve soil structure, water-holding capacity and 

biological activity, thereby buffering crops against climatic 

stresses [4, 6, 8-10]. The strong contributions of temperature- 

and moisture-related indices are consistent with evidence 

that potato yield and tuber quality are sensitive to heat and 

water stress, particularly during tuber initiation and bulking 
[1, 4, 11]. By capturing these interactions implicitly, AI models 

can infer site-specific nutrient requirements that account for 

local climate regimes, a capability that is increasingly 

important under climate variability and change [11]. 

The simulation-optimization analysis using the best-

performing AI model further illustrates the potential of AI-

guided INM design. AI-optimized INM strategies improved 

predicted mean yield and net returns beyond both RDF and 

observed INM, while simultaneously reducing mineral N 

inputs and estimated N surpluses. This outcome supports the 

hypothesis that AI models, once trained on sufficiently rich 

datasets, can identify nutrient combinations that 

conventional trial-based approaches or rule-of-thumb 

recommendations may overlook [5-7, 11-14]. Importantly, the 

AI-suggested strategies did not rely on drastic reductions in 

fertilizer use; instead, they fine-tuned the balance between 

organic and mineral sources, adjusted rates within 

agronomically realistic bounds and implicitly optimized 

timing relative to local thermal and moisture conditions. 

Such nuanced adjustments are consistent with the principles 

of site-specific nutrient management and INM promoted in 

agronomic literature and extension programmes [4-7, 8-10]. 

From a sustainability perspective, the shift of AI-optimized 

recommendations toward lower mineral N rates and higher 

organic contributions, combined with constraints on N 

surplus, indicates that these tools can help reconcile 

productivity goals with environmental objectives. Excessive 

N inputs in potato systems have been linked to low nitrogen 

use efficiency, elevated nitrous oxide emissions and nitrate 

leaching [5-7, 11]. By steering solutions toward the Pareto 

front that maximizes net returns while limiting N surplus, 

the AI framework operationalizes the concept of “producing 

more with less” advocated in sustainable intensification and 

climate-smart agriculture discourses [5-7, 11]. The convergent 

evidence that such strategies also maintain or enhance tuber 

quality and nutritional attributes [1-4, 8-10] underscores the 

potential co-benefits for human health, given the important 

role of potatoes in supplying vitamin C, potassium and 

bioactive compounds in many diets [1-3]. 

At the same time, several limitations of this study warrant 

consideration. First, although the dataset integrated multiple 

site-year experiments across diverse agro-ecologies, it is 

still modest relative to the spatial and management diversity 

of global potato production. Certain soil types, cultivars or 

extreme climate conditions may be under-represented, 

which could limit the external validity of the trained models 
[1, 4-7, 11]. Second, the environmental indicators available for 

modelling were restricted primarily to N surplus and partial 

factor productivity; more comprehensive measures of 

nitrogen and phosphorus losses, greenhouse gas emissions 

and soil health dynamics were not systematically available 
[5-7, 11]. Incorporating process-based model outputs or high-

resolution measurements of gaseous and leaching losses into 

future datasets would enable AI models to optimize across a 

broader suite of environmental outcomes. Third, despite the 

superior predictive performance of tree ensembles and deep 

learning models, their “black-box” nature may limit 

interpretability and trust among agronomists and farmers. 

While feature importance and partial dependence analyses 

offer some insight, more work is needed on explainable AI 

techniques that can translate model behaviour into 

agronomically meaningful rules and recommendations [11-14]. 

Another practical challenge concerns data requirements and 

digital infrastructure. Developing robust AI-driven INM 

tools presupposes access to reliable, harmonized datasets on 

soils, weather, management and yields, which may be scarce 

in smallholder-dominated systems [5-7, 11]. Recent advances 

in open-access remote sensing products, reanalysis weather 

datasets and digital soil mapping can help fill some gaps, 

but integration with local trial data and farmer records 

remains a bottleneck [11-14]. Moreover, the deployment of 

AI-based recommendation tools in the field hinges on user-

friendly interfaces, connectivity and capacity building 

among extension workers and farmers. Experience from 

digital agriculture initiatives suggests that co-design with 

users, alignment with existing advisory services and 

transparent communication of uncertainty are critical for 

adoption and sustained use [5-7, 11-14]. 

Future research should therefore focus on three 

complementary directions. First, expanding the INM dataset 

geographically and temporally, including more cultivars, 

management intensities and climate extremes, would 

strengthen model generalizability and allow explicit testing 

of robustness under projected climate change scenarios [1, 4-7, 

11]. Second, coupling AI models with process-based crop 

and soil models could enable hybrid frameworks that 

combine mechanistic understanding with data-driven 

flexibility, potentially improving extrapolation to novel 

conditions and enhancing interpretability [11-14]. Third, 

participatory on-farm trials that compare AI-generated INM 

recommendations with farmer practice and standard 

advisory packages would provide critical evidence on real-

world performance, socio-economic feasibility and barriers 

to adoption. 

In summary, this study confirms that INM remains a 

powerful agronomic strategy for improving yield, quality 

and profitability in potato systems [4-7, 8-10] and shows that 

AI-driven prediction models can significantly enhance the 

design and targeting of such strategies. By leveraging multi-

source data and powerful learning algorithms, AI tools can 

move beyond generic recommendations to provide site-

specific nutrient advice that is better aligned with local soils, 

climate and production objectives [11-14]. While challenges 

related to data, interpretability and implementation persist, 

the integration of AI-based decision support into digital 

agriculture platforms offers a promising pathway toward 

more efficient, climate-resilient and nutritionally sensitive 

potato production systems that honour both agronomic 

principles and sustainability imperatives [1-7, 11-14]. 

 

Conclusion 
The present study confirms that integrating artificial 

intelligence with agronomically sound nutrient management 
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has the potential to transform potato production systems by 

delivering higher yields, better tuber quality, improved 

profitability and lower nitrogen surpluses than both blanket 

fertilizer recommendations and current farmer practice, and 

on this basis several concrete conclusions and practical 

recommendations can be drawn together. Overall, the AI-

driven models captured complex, non-linear interactions 

among organic and mineral nutrient inputs, soil properties 

and weather conditions more effectively than conventional 

statistical approaches, and the simulation-optimization 

workflow demonstrated that site-specific integrated nutrient 

management (INM) strategies generated by the best-

performing model could raise yield and net returns while 

simultaneously reducing mineral nitrogen use and estimated 

nitrogen surplus. This indicates that future nutrient advisory 

systems for potato should move away from uniform 

recommendations towards dynamic, data-informed 

prescriptions that explicitly account for local soil fertility, 

climate and resource constraints. Practically, research and 

extension agencies should prioritize the expansion of multi-

location INM trials, digital recording of field management 

and yield data, and systematic characterization of soils and 

weather so that robust training datasets for AI models can be 

developed and continuously updated. At the farm level, 

advisory services and agri-tech platforms should encourage 

growers to adopt INM packages that combine farmyard 

manure, composts and other organic resources with 

calibrated mineral nitrogen, phosphorus and potassium 

inputs, while using AI-based tools to fine-tune rates and 

timing rather than relying solely on fixed regional 

recommendations; these tools should be embedded in user-

friendly mobile or web interfaces that provide simple, 

actionable guidance such as recommended nutrient rates per 

field, expected yield and profitability, and indicative 

environmental performance. Policy makers and input 

suppliers can support this transition by incentivizing the use 

of organic amendments, promoting balanced fertilizer 

blends and facilitating access to reliable soil testing and 

weather information, while investing in digital infrastructure 

and open data initiatives that make agronomic, climatic and 

market information available to AI developers and public 

institutions. At the same time, it is essential to accompany 

technology deployment with capacity building for extension 

workers, agronomists and farmer organizations so that they 

can interpret AI-generated recommendations, understand 

their assumptions and limitations, and adapt them to local 

socio-economic realities. Finally, the promising results from 

AI-optimized INM scenarios underscore the need for on-

farm validation trials in diverse agro-ecological zones, 

where farmers co-design and test AI-based nutrient plans 

against their usual practice, generating new data for iterative 

model improvement and ensuring that emerging decision-

support systems remain grounded in practical feasibility, 

risk management and farmer preferences. 
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