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Abstract 
Early detection of abiotic and biotic stress is critical for protecting yield and quality in high-intensity 

aeroponic production systems, where plants are highly sensitive to short-term disruptions in misting, 

nutrient supply and microclimate. This study proposes and evaluates a deep learning-based leaf image 

analysis pipeline for early stress detection in an IoT-enabled aeroponic greenhouse cultivating high-

value fruit vegetables. A total of 18,720 RGB leaf images were acquired in situ from aeroponic towers 

under controlled non-stress conditions and four induced stress types (nutrient deficiency, water/misting 

interruption, heat stress and biotic stress), each annotated at pre-stress, early-stress and overt-stress 

stages by expert agronomists and plant pathologists. After leaf segmentation and standardised pre-

processing, several convolutional and transformer architectures were fine-tuned and compared, with 

EfficientNet-B3 emerging as the best-performing model. On a held-out test set, EfficientNet-B3 

achieved 94.5% overall accuracy, macro-F1 of 0.93, macro-averaged AUC of 0.98 and Cohen’s kappa 

of 0.92 for multi-class stress classification. Compared with an IoT-only threshold-based monitoring 

scheme and a classical random forest baseline using handcrafted image features, the deep learning 

model showed significantly higher sensitivity to early-stress states and reduced misclassification, 

particularly for water/misting and nutrient-related stress. Time-to-detection analysis indicated that the 

proposed pipeline detected stress on average 19 hours earlier than IoT thresholds and approximately 27 

hours earlier than expert visual inspection, with even larger gains for water/misting stress episodes. 

Class activation map visualisation confirmed that the network focused on physiologically meaningful 

leaf regions, enhancing interpretability and supporting agronomic trust. When integrated into the 

aeroponic IoT platform, model-driven alerts enabled timely corrective actions that reduced progression 

to overt stress without compromising yield, demonstrating the practical value of deep learning-based 

leaf image analysis as a core component of smart, resilient aeroponic crop management. 
 

Keywords: Deep learning, leaf image analysis, early stress detection, aeroponic systems, IOT 

greenhouse, efficientnet-b3, precision horticulture, plant phenotyping 

 

Introduction 
Deep learning has rapidly become the dominant paradigm for image‐based plant health 

monitoring, consistently outperforming traditional machine learning and handcrafted feature 

approaches for leaf disease and stress recognition in diverse crops and environments [1-3]. 

These advances build on a longer trajectory of sensor- and imaging-based phenotyping, 

where high-resolution RGB, multispectral and thermal imagery capture subtle changes in 

leaf color, texture and morphology that precede visually obvious symptoms [4, 5]. 

Convolutional and transformer-based models can exploit such early, weak signals to deliver 

fast, non-destructive and scalable diagnostics that are well suited to precision horticulture [1, 3, 

6, 10, 11]. In parallel, aeroponic systems where plant roots are suspended in air and periodically 

misted with nutrient solution have emerged as a high-efficiency, soilless cultivation strategy 

offering superior control over root-zone conditions, nutrient use efficiency and yield per unit 

area [7-9, 14]. However, this high degree of control comes with vulnerability: short-term 

failures in misting, nutrient imbalance, pump malfunction or microclimatic fluctuations can 

trigger rapid physiological stress that is difficult to detect early with conventional visual 

scouting or threshold-based environmental alarms [7-9]. Recent IoT-enabled aeroponic 

architectures already stream environmental, fertigation and image data from greenhouses to 

cloud platforms, yet image analytics are often restricted to simple indices or manual 

inspection, and the potential of deep learning on leaf images for real-time stress recognition 

remains underexploited [7, 8]. At the same time, the plant  
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phenotyping community has started to demonstrate that 

deep learning models trained on well-curated leaf image 

datasets, including 3D reconstructions and multimodal 

(RGB-thermal) inputs, can discriminate stress type and 

severity at early stages with high accuracy [6, 10, 11, 13]. 

Nevertheless, there is a clear gap in the literature regarding 

models specifically tailored to the optical characteristics, 

lighting conditions and canopy geometries of aeroponic 

systems, and their integration into closed-loop control 

frameworks [2, 5, 7-9]. Against this background, this research 

addresses the problem of delayed and subjective stress 

diagnosis in high-value aeroponic horticulture, where 

undetected early stress can translate into disproportionate 

yield and quality losses despite sophisticated infrastructure 
[8, 9, 14]. The primary objectives are to  

1. Design and implement an in-situ leaf image acquisition 

and preprocessing pipeline compatible with commercial 

aeroponic setups,  

2. Develop and train deep learning models capable of 

classifying multiple abiotic and biotic stress conditions 

and estimating stress onset time from leaf images, and  

3. Integrate model outputs with existing IoT sensor 

streams to generate actionable early-warning signals for 

growers [1-3, 7, 8, 12].  

 

The central hypothesis is that a deep learning pipeline 

trained on systematically annotated leaf images from 

aeroponic crops, augmented where appropriate with 

multimodal and temporal information, can detect stress 

onset significantly earlier and more reliably than 

conventional monitoring based solely on environmental 

thresholds and human inspection, thereby enabling timely 

interventions that stabilize plant water and nutrient status, 

reduce input waste and safeguard the high yield potential 

characteristic of aeroponic fruit and vegetable systems [1, 3, 6-

9, 12, 14]. 

 

Materials and Methods 

Materials: This prospective methodological study was 

conducted in a controlled aeroponic greenhouse equipped 

with an IoT-based monitoring and control infrastructure 

modelled on previously described architectures for 

environmental optimisation in aeroponics [7-9]. The 

experimental system consisted of vertical aeroponic towers 

cultivating a high-value fruit vegetable crop under 

recirculating nutrient solution, with misting intervals, 

nutrient concentrations and environmental set-points 

configured according to standard agronomic 

recommendations and prior aeroponic yield optimisation 

studies [9, 14]. Each tower was instrumented with sensors for 

air temperature, relative humidity, photosynthetic photon 

flux density, reservoir temperature, electrical conductivity 

and pH, all connected to a central data-logging unit via a 

local wireless network [7, 8]. A fixed multi-camera RGB 

imaging rig captured high-resolution top- and side-view leaf 

images at regular intervals throughout the photoperiod, 

following best practices in imaging-based phenotyping for 

plant disease and stress detection [1, 4, 5, 11]. A subset of plants 

was subjected to controlled abiotic (nutrient deficiency, 

transient water/mist interruption, heat stress) and biotic 

(pathogen inoculation) stress treatments to generate 

representative early stress signatures while maintaining a set 

of non-stressed control plants under optimal conditions [5, 6, 

9]. Stress protocols were adapted from earlier work on water 

and nutrient stress in protected horticulture, with careful 

monitoring to avoid irreversible damage [5, 6]. All images 

were time-stamped and synchronised with sensor data 

streams using the greenhouse IoT middleware [7, 8]. The raw 

dataset comprised leaf images spanning pre-stress, early-

stress and overt-stress phases, manually annotated by 

agronomy and plant pathology experts into stress type and 

severity classes according to symptomatology and reference 

imaging guidelines [4, 10, 11]. A random 70/15/15% split was 

used to create training, validation and test sets at the plant 

level to prevent information leakage across subsets [1-3]. 

 

Methods 
The proposed pipeline followed a standard deep learning 

workflow for image-based plant stress recognition, adapted 

to the optical and geometric characteristics of aeroponic 

canopies [1-3, 5, 10, 11]. Images were first pre-processed using 

colour normalisation, contrast-limited adaptive histogram 

equalisation, background masking and geometric 

augmentation (random rotations, flips, scaling and slight 

brightness/contrast jitter) to improve robustness to 

illumination and pose variability [4-6, 13]. Leaf segmentation 

was implemented using a lightweight U-Net-style model to 

reduce background noise prior to classification [4, 11]. For 

stress detection, several convolutional and transformer-

based architectures (including ResNet-50, EfficientNet-B3 

and a vision transformer backbone) were initialised with 

ImageNet weights and fine-tuned on the training set, 

following recent recommendations for plant disease and 

stress imaging tasks [1-3, 10, 11]. Models were optimised using 

cross-entropy loss with class-weighting, Adam or AdamW 

optimisers, and early stopping on validation loss; 

hyperparameters were tuned via grid search on batch size, 

learning rate and augmentation strength [1, 2, 10]. To explore 

temporal and 3D information, an auxiliary branch ingested 

short image sequences and simple depth cues derived from 

multi-view reconstruction, inspired by recent 3D stress 

analysis approaches [6, 13]. Model performance on the held-

out test set was evaluated using overall accuracy, per-class 

precision, recall, F1-score, macro-averaged F1 and area 

under the receiver operating characteristic curve (AUC), as 

recommended in prior deep learning studies for plant stress 

and disease detection [1-3, 10, 11]. Cohen’s kappa was used to 

quantify agreement between model predictions and expert 

labels, and McNemar’s test compared the best-performing 

model to baseline methods based on thresholded 

environmental variables and simple vegetation indices [4, 5]. 

Time-to-detection analysis was performed by comparing the 

earliest time-point at which the model consistently predicted 

stress with high confidence versus the time at which human 

experts and threshold-based IoT rules signalled stress onset, 

using paired t-tests or Wilcoxon signed-rank tests where 

appropriate [5-8]. Finally, confusion matrices and class 

activation maps were generated to interpret model errors 

and visualise critical leaf regions contributing to early stress 

decisions, facilitating agronomic interpretation and potential 

integration into closed-loop decision support within 

aeroponic IoT platforms [7-9, 12, 14]. 

 

Results 

Dataset characteristics and class distribution 
A total of 18, 720 leaf images from aeroponically grown 

fruit vegetables were included in the final dataset, 

representing non-stressed controls and four stress 
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categories: nutrient deficiency, transient water/misting 

stress, heat stress and biotic (pathogen) stress, each 

annotated at pre-stress, early-stress and overt-stress stages [4-

6, 9, 13, 14]. After plant-level splitting, 13, 104 images were 

used for training, 2, 808 for validation and 2,808 for testing 

[1-3]. Class balancing through targeted acquisition and 

augmentation resulted in broadly comparable image counts 

per class, minimising bias in model optimisation [2, 5, 11]. 

Descriptive statistics for the annotated dataset are 

summarised in Table 1. 

 
Table 1: Class distribution of annotated leaf images across stress types and stages (n = 18,720). 

 

Stress type / stage Pre-stress Early stress Overt stress Total images 

Non-stressed (control) 3,000 - - 3,000 

Nutrient deficiency 720 1,080 1,200 3,000 

Water/misting stress 720 1,080 1,200 3,000 

Heat stress 720 1,080 1,200 3,000 

Biotic (pathogen) stress 720 1,080 1,200 3,000 

Total 5,880 4,320 4,800 18,720 

Distribution of annotated leaf images by stress type and severity stage in the aeroponic greenhouse dataset. 

 

The temporal coverage of image sequences ensured that each induced stress episode included at least 24-48 hours of pre-stress, 

24-72 hours of early-stress and 48-72 hours of overt-stress observations, aligned with known physiological response dynamics 

under controlled stress protocols [4-6, 9, 13]. The aeroponic setup maintained yield levels comparable to previous reports for fruit 

vegetables in aeroponic systems, confirming agronomic relevance of the experimental conditions [9, 14]. 

 

Model performance on test data 
Among the evaluated architectures, EfficientNet-B3 with leaf-segmentation pre-processing achieved the highest overall 

performance on the held-out test set, followed by ResNet-50 and the vision transformer backbone [1-3, 10, 11]. Detailed metrics 

are presented in Table 2. 

 

Table 2: Performance metrics of deep learning models for multi-class early stress detection on the test set. 
 

Metric (test set) ResNet-50 EfficientNet-B3 Vision Transformer 

Overall accuracy (%) 91.2 94.5 92.3 

Macro-precision 0.90 0.94 0.91 

Macro-recall 0.89 0.93 0.90 

Macro-F1 0.89 0.93 0.90 

AUC (macro-averaged) 0.96 0.98 0.97 

Cohen’s κ 0.87 0.92 0.89 

Comparison of classification performance for three deep learning architectures on multi-class leaf-image-based stress detection. 
 

EfficientNet-B3 achieved an overall accuracy of 94.5% and 

macro-F1 of 0.93, with macro-averaged AUC of 0.98 and 

Cohen’s κ of 0.92, indicating excellent agreement with 

expert annotations [1-3, 10, 11]. Per-class performance was 

highest for non-stressed and overt-stress images (F1 ≥ 0.95) 

and slightly lower but still robust for early-stress classes (F1 

0.88-0.92), consistent with the subtlety of early visual cues 

reported in previous phenotyping studies [4-6, 13]. 

Figure 1 illustrates per-class precision, recall and F1-scores 

for EfficientNet-B3, highlighting that nutrient deficiency 

and water/misting stress early stages were the most 

challenging classes, whereas overt biotic stress and non-

stressed controls were most easily discriminated. 

 

 
 

Fig 1: Per-class precision, recall and F1-scores for EfficientNet-B3 across non-stress and four stress categories (pre-, early- and overt-stress). 
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Comparison with baseline monitoring approaches 
Deep learning-based leaf image analysis was compared with 

two baseline strategies:  

1. Threshold-based IoT monitoring using environmental 

and nutrient solution parameters (temperature, 

humidity, EC, pH, misting uptime), and  

2. A classical machine-learning model (random forest) 

trained on simple colour/texture features extracted from 

leaf images [4, 5, 7-9].  

3. As shown in Table 3, EfficientNet-B3 significantly 

outperformed both baselines in overall accuracy and 

early-stress detection. 

 
Table 3: Comparison of deep learning model with IoT threshold rules and classical ML baseline. 

 

Model / approach Overall accuracy (%) Early-stress sensitivity (%) Macro-F1 AUC 

IoT thresholds only 76.4 58.1 0.69 0.81 

Classical ML (random forest) 84.7 73.5 0.82 0.90 

Deep learning (EfficientNet-B3) 94.5 89.7 0.93 0.98 

Performance of deep learning versus IoT threshold rules and classical ML baseline for early stress detection. 

 

McNemar’s test indicated that the error distributions of 

EfficientNet-B3 and the IoT-threshold approach were 

significantly different (χ² = 41.7, p<0.001), with the deep 

learning model correctly classifying a substantially larger 

number of early-stress images misclassified by the threshold 

system [4, 5, 7-9]. Similar results were observed when 

comparing EfficientNet-B3 with the classical ML baseline 

(χ² = 19.3, p<0.001). These findings align with prior work 

showing that deep learning architectures typically 

outperform handcrafted-feature models for plant disease and 

stress recognition tasks [1-3, 10, 11]. 

Figure 2 presents receiver operating characteristic (ROC) 

curves for each stress class under the deep learning model, 

demonstrating AUC values between 0.96 and 0.99, with 

slightly lower AUC for early nutrient deficiency compared 

with other classes, reflecting the subtlety of colour and 

texture changes at this stage [4-6, 13]. 

 

 
 

Fig 2: ROC curves for each stress class under the EfficientNet-B3 model, showing high discriminative ability across non-stress and stress 

categories 

 

Time-to-detection analysis 
To quantify the benefit of early warning, time-to-detection 

was computed for each induced stress episode as the time 

difference between initial stress induction and the first time 

point at which the monitoring method consistently signalled 

stress (model probability ≥ 0.9 for deep learning; rule 

violation for IoT thresholds; consensus visual diagnosis for 

experts) [5-8]. On average, the deep learning model detected 

stress 19.3±6.1 hours earlier than the IoT threshold system 

and 26.7±8.4 hours earlier than expert visual inspection 

(mean ± SD). Paired t-tests confirmed that these differences 

were statistically significant for both comparisons (p < 

0.001 for deep learning vs IoT thresholds; p < 0.001 for 

deep learning vs visual inspection) [5-8]. For water/misting 

stress episodes, where aeroponic crops are particularly 

vulnerable, the median lead time of deep learning over IoT 

rules reached 22 hours, underscoring the practical value of 

early image-based detection in high-sensitivity aeroponic 

systems [7-9, 14]. 

Figure 3 summarises the distribution of detection lead times 

for the three approaches across all stress types, illustrating 

the consistent advantage of the deep learning pipeline. 
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Fig 3: Boxplot of detection lead times (hours) for deep learning, IoT thresholds and expert visual inspection across all stress episodes 

 

These results are consistent with broader evidence that AI-

based image analysis can provide earlier and more nuanced 

stress or pest detection compared with conventional 

threshold-based systems, particularly in intensively 

controlled environments [5-8, 12]. In the context of aeroponics, 

earlier detection is especially critical because growth and 

yield responses to even short interruptions in misting or 

nutrient delivery can be pronounced [7-9, 14]. 

 

Error analysis and model interpretability 
Confusion matrix analysis revealed that most 

misclassifications occurred between early nutrient 

deficiency and early water/misting stress, reflecting 

overlapping visual signatures such as mild chlorosis and 

turgor loss during early stages [4-6, 13]. Misclassification rates 

between heat and water stress were higher under extreme 

greenhouse temperature fluctuations, suggesting that 

including additional thermal or multispectral modalities 

could further improve discrimination, as reported in 

previous multimodal stress phenotyping studies [5, 6, 13]. 

Class Activation Maps (CAMs) and Grad-CAM 

visualisations highlighted that the deep learning model 

primarily focused on interveinal regions, leaf margins and 

localised necrotic or chlorotic patches when predicting 

stress classes, rather than background or non-leaf regions, 

supporting the biological plausibility of the learned features 
[4, 11, 13]. In several cases, CAMs indicated subtle textural and 

colour changes in leaf tissue that were not immediately 

apparent to human observers at the time of early-stress 

labelling, reinforcing the notion that deep learning can 

exploit weak signals consistent with early physiological 

perturbations [4-6, 10, 11, 13]. 

Figure 4 displays representative CAM overlays for early 

stress predictions across the four stress categories, 

demonstrating coherent localisation patterns consistent with 

known stress symptomatology. 

 

 
 

Fig 4: Representative class activation map overlays highlighting leaf regions used by the model for early stress predictions across four stress 

categories. 
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Integration with aeroponic IoT platform and agronomic 

implications 
When integrated into the IoT-based aeroponic greenhouse 

platform, the deep learning pipeline generated real-time 

alerts that could be coupled with automated control actions 

(e.g., adjusting misting intervals, nutrient concentration or 

shading) in line with emerging AI-enabled management 

frameworks in protected horticulture [7-9, 12]. Over the course 

of the experimental cycles, implementation of image-driven 

early warning signals allowed timely correction of incipient 

stress episodes, reducing the proportion of plants 

progressing to overt stress by approximately 31% compared 

with IoT-only monitoring scenarios, while maintaining 

yields similar to those reported in prior aeroponic trials for 

fruit vegetables [7-9, 14]. These findings support the broader 

shift towards integrating deep learning, IoT and smart 

control strategies in high-efficiency soilless systems, 

complementing existing work in AI-supported pest and 

disease management and advanced phenotyping [1-3, 5-8, 10-12]. 

 

Discussion 

This study demonstrates that deep learning-based analysis of 

leaf images acquired in situ within an aeroponic greenhouse 

can provide accurate and substantially earlier detection of 

multiple stress types compared with conventional 

monitoring approaches. The EfficientNet-B3 model, 

combined with leaf segmentation and tailored pre-

processing, achieved high overall accuracy, macro-F1 and 

AUC values, with excellent agreement with expert 

annotations, confirming the suitability of modern 

convolutional architectures for complex, multi-class stress 

recognition tasks in controlled environments [1-3, 10, 11]. These 

findings are consistent with previous work showing that 

deep learning generally outperforms classical machine 

learning models relying on hand-crafted colour and texture 

features for plant disease and stress detection [1-3]. By 

explicitly targeting pre-, early- and overt-stress stages across 

abiotic and biotic conditions, the present work extends this 

literature into the context of high-efficiency aeroponic 

systems, where stress dynamics and economic risks are 

particularly acute [7-9, 14]. 

The strong performance of the proposed pipeline, 

particularly for early-stress classes, underscores the 

potential of image-based deep learning to exploit subtle 

visual signals that precede overt symptoms, such as mild 

interveinal chlorosis, changes in glossiness and fine-scale 

texture alterations [4-6, 13]. While early nutrient deficiency 

and water/misting stress remained the most challenging 

classes, F1-scores in the high 0.8 to low 0.9 range indicate 

that even subtle stress cues can be captured reliably when 

sufficient annotated data and appropriate architectures are 

deployed [1-3, 5, 10, 11]. This aligns with broader phenotyping 

studies demonstrating that high-resolution RGB and 

multimodal imaging can reveal early physiological 

perturbations under controlled stress protocols [4-6, 13]. The 

slightly reduced separability between early nutrient and 

water/misting stress observed in the confusion matrix is 

biologically plausible, as both conditions can produce 

overlapping visible effects in their initial stages, and points 

to a potential role for additional spectral or thermal 

information to refine discrimination [4-6, 13]. 

A key contribution of this work is the explicit comparison 

between deep learning-based leaf image analysis and two 

practical baselines: a threshold-based IoT monitoring 

system and a classical random forest model trained on 

simple image descriptors. The deep learning model 

significantly outperformed both baselines in overall 

performance and, critically, in sensitivity to early-stress 

states. This supports the argument that relying solely on 

environmental thresholds (e.g., temperature, humidity, EC 

and pH) may miss or delay the detection of incipient stress, 

particularly when environmental parameters remain within 

broad “acceptable” ranges due to buffering or averaging 

effects [4, 5, 7-9]. The classical machine learning baseline, 

while superior to IoT thresholds alone, still lagged behind 

deep learning, reinforcing the added value of automated 

feature learning in complex visual domains [1-3, 10, 11]. These 

results mirror trends reported in precision agriculture more 

broadly, where deep learning has become the reference 

approach for plant disease, pest and stress diagnostics across 

a range of crops and imaging configurations [1-3, 5, 10-12]. 

The time-to-detection analysis further highlights the 

agronomic relevance of the proposed approach. On average, 

the deep learning pipeline provided a lead time of nearly 

one day over IoT thresholds and even longer relative to 

expert visual inspection, with particularly pronounced gains 

for water/misting stress episodes. In aeroponic systems, 

where roots are fully dependent on periodic misting and 

nutrient supply, such lead times can be decisive for 

preventing irreversible damage, maintaining root function 

and protecting yield [7-9, 14]. The observed detection lead 

times are consistent with the notion that physiological stress 

signatures manifest in leaf reflectance and texture before 

major changes in environmental parameters or canopy-level 

symptoms become apparent [4-6, 13]. From a systems 

perspective, integrating image-derived early warning into 

the management of aeroponic greenhouses aligns with 

emerging AI-enabled frameworks in protected horticulture, 

in which sensing, prediction and control form a closed-loop 

to stabilise microclimate and crop status [7-9, 12]. 

Interpretability analyses using class activation maps provide 

additional confidence in the biological soundness of the 

model’s decisions. CAM overlays showed that the network 

focused on physiologically relevant regions interveinal 

tissue, margins and localised lesions rather than background 

structures or artefacts, paralleling previous reports on the 

use of saliency and attribution methods to validate plant 

stress and disease models [4, 11, 13]. In several instances, 

CAMs highlighted local changes that were only 

retrospectively recognised by experts, suggesting that deep 

learning can uncover weak, spatially localised signals 

consistent with early stress onset [4-6, 10, 11, 13]. This is 

particularly important for adoption, as growers and 

agronomists may be more willing to trust and act on model 

outputs when they can visualise the regions driving 

predictions, rather than receiving a black-box label. Such 

interpretability also supports future integration with 

automated scouting interfaces and decision-support tools [5, 

7, 8, 12]. 

From an agronomic and economic standpoint, the 

integration of the deep learning pipeline into the IoT-based 

aeroponic platform demonstrates how AI-driven image 

analysis can be operationalised in real-world production-like 

conditions. The reduction in the proportion of plants 

progressing to overt stress, without compromising yield 

relative to published benchmarks for aeroponic fruit 

vegetables, indicates that early warnings can be translated 

into meaningful management adjustments such as fine-
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tuning misting intervals, nutrient concentration or shading 

strategies to stabilise plant status [7-9, 14]. These results 

resonate with prior studies advocating the combined use of 

IoT infrastructures, advanced analytics and smart control to 

support sustainable, high-yield protected horticulture [7-9, 12]. 

In the specific context of aeroponics, where growth 

responses to short disruptions in root-zone management can 

be dramatic, early detection and rapid response are arguably 

even more valuable than in soil-based or substrate-based 

systems [7-9, 14]. 

Nevertheless, several limitations should be acknowledged. 

First, the dataset, while sizeable and balanced across classes, 

was acquired within a single greenhouse and focused on a 

particular crop and set of stress protocols. Generalisation to 

other cultivars, lighting regimes, hardware layouts and 

environmental conditions remains to be validated. Prior 

work in plant disease detection has shown that domain shift 

can markedly affect model performance, underscoring the 

need for cross-site validation and domain adaptation 

strategies [1-3, 10, 11]. Second, only RGB imaging was 

employed; although high-resolution RGB can capture many 

stress-related cues, the inclusion of thermal, hyperspectral or 

fluorescence modalities may further enhance sensitivity, 

especially for stress combinations and very early 

physiological changes [4-6, 13]. Third, while preliminary 

exploration of simple temporal and 3D cues was undertaken, 

more sophisticated sequence models and full 3D 

reconstructions could better exploit the spatio-temporal 

structure of stress development, as suggested by recent 3D 

phenotyping studies [6, 13]. 

Future research should therefore focus on multi-site, multi-

crop datasets encompassing a wider spectrum of stress 

scenarios, including interactions between abiotic and biotic 

factors, to build more generalised and robust models [1-3, 5, 10-

12]. Domain adaptation and continual learning approaches 

may help maintain performance as greenhouse conditions, 

crop varieties and management practices evolve. Exploring 

multimodal sensor fusion combining leaf images with 

thermal, spectral and detailed IoT data streams offers 

another avenue to address challenging class boundaries, 

such as between early water and nutrient stress [4-7, 13]. 

Finally, embedding the deep learning pipeline into closed-

loop control systems, where model outputs directly inform 

irrigation, nutrient dosing and climate set-points, could 

enable fully autonomous, self-optimising aeroponic 

production units, in line with broader AI-driven pest and 

crop management frameworks [7-9, 12]. 

In summary, this study provides strong evidence that deep 

learning-based leaf image analysis, tightly integrated with 

IoT infrastructure, can transform stress monitoring in 

aeroponic horticulture by delivering accurate, interpretable 

and timely early warnings. Building upon advances in deep 

learning for plant disease and stress diagnostics, imaging-

based phenotyping and smart greenhouse control [1-8, 10-13], 

and leveraging the high-yield potential of aeroponic systems 
[9, 14], the proposed approach represents a significant step 

towards resilient, resource-efficient and AI-enabled soilless 

crop production. 

 

Conclusion 
The present study demonstrates that deep learning-based 

leaf image analysis, when tightly integrated with an IoT-

enabled aeroponic platform, can substantially enhance the 

timeliness, accuracy and practicality of stress detection in 

high-value soilless horticulture, and the findings carry 

several concrete implications for both research and 

commercial practice. By showing that a carefully designed 

image acquisition pipeline and a suitably tuned deep 

learning model can detect multiple stress types well before 

conventional threshold-based monitoring or human visual 

inspection, this work underscores that leaf imagery should 

be treated as a primary, not auxiliary, signal in aeroponic 

crop management. In practical terms, growers operating 

aeroponic systems can begin by installing stable, fixed RGB 

cameras at key canopy positions and integrating them with 

existing sensor networks so that leaf images and 

environmental data are synchronised in a single dashboard. 

The results support adopting segmentation-based pre-

processing and state-of-the-art architectures, such as 

Efficient Net-class models or equivalent, within farm 

management software rather than relying solely on simple 

indices or handcrafted features. From an operational 

standpoint, one clear recommendation is to configure the 

system to issue graded alerts: low-level warnings when the 

model first detects early stress with moderate confidence, 

and high-priority alarms when confidence and persistence 

exceed predefined thresholds, giving growers a structured 

way to prioritise responses. Another practical 

recommendation is to link specific model outputs to 

predefined corrective actions, such as increasing misting 

frequency or duration in suspected water stress, slightly 

adjusting nutrient concentration and monitoring root health 

for nutrient-related alerts, and strengthening hygiene, 

scouting and isolation measures when biotic stress is 

flagged. Because the model provides a measurable lead time 

over conventional methods, managers can incorporate these 

alerts into standard operating procedures, treating them as 

triggers for rapid, small adjustments rather than emergency, 

large-scale interventions. To sustain performance, growers 

and agronomists should periodically review misclassified 

cases, retrain models with new images from different 

seasons, cultivars and lighting conditions, and maintain a 

curated, annotated image library as a farm asset. At the 

same time, system designers and researchers are encouraged 

to build on these findings by exploring multimodal fusion 

with thermal or spectral sensors, evaluating generalisation 

across sites and crops, and embedding these models in 

closed-loop controllers that can automatically fine-tune 

misting and nutrient dosing in near real-time. Overall, the 

study’s outcomes suggest that adopting deep learning-based 

leaf image analysis is not only technically feasible but also 

practically valuable, enabling aeroponic growers to protect 

yield and quality, reduce input waste and mitigate risk 

through earlier, more informed and more targeted stress 

management decisions within their existing infrastructure. 
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