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Abstract

Early detection of abiotic and biotic stress is critical for protecting yield and quality in high-intensity
aeroponic production systems, where plants are highly sensitive to short-term disruptions in misting,
nutrient supply and microclimate. This study proposes and evaluates a deep learning-based leaf image
analysis pipeline for early stress detection in an loT-enabled aeroponic greenhouse cultivating high-
value fruit vegetables. A total of 18,720 RGB leaf images were acquired in situ from aeroponic towers
under controlled non-stress conditions and four induced stress types (nutrient deficiency, water/misting
interruption, heat stress and biotic stress), each annotated at pre-stress, early-stress and overt-stress
stages by expert agronomists and plant pathologists. After leaf segmentation and standardised pre-
processing, several convolutional and transformer architectures were fine-tuned and compared, with
EfficientNet-B3 emerging as the best-performing model. On a held-out test set, EfficientNet-B3
achieved 94.5% overall accuracy, macro-F1 of 0.93, macro-averaged AUC of 0.98 and Cohen’s kappa
of 0.92 for multi-class stress classification. Compared with an loT-only threshold-based monitoring
scheme and a classical random forest baseline using handcrafted image features, the deep learning
model showed significantly higher sensitivity to early-stress states and reduced misclassification,
particularly for water/misting and nutrient-related stress. Time-to-detection analysis indicated that the
proposed pipeline detected stress on average 19 hours earlier than 10T thresholds and approximately 27
hours earlier than expert visual inspection, with even larger gains for water/misting stress episodes.
Class activation map visualisation confirmed that the network focused on physiologically meaningful
leaf regions, enhancing interpretability and supporting agronomic trust. When integrated into the
aeroponic loT platform, model-driven alerts enabled timely corrective actions that reduced progression
to overt stress without compromising yield, demonstrating the practical value of deep learning-based
leaf image analysis as a core component of smart, resilient aeroponic crop management.

Keywords: Deep learning, leaf image analysis, early stress detection, aeroponic systems, 10T
greenhouse, efficientnet-b3, precision horticulture, plant phenotyping

Introduction

Deep learning has rapidly become the dominant paradigm for image-based plant health
monitoring, consistently outperforming traditional machine learning and handcrafted feature
approaches for leaf disease and stress recognition in diverse crops and environments 13,
These advances build on a longer trajectory of sensor- and imaging-based phenotyping,
where high-resolution RGB, multispectral and thermal imagery capture subtle changes in
leaf color, texture and morphology that precede visually obvious symptoms [ °I,
Convolutional and transformer-based models can exploit such early, weak signals to deliver
fast, non-destructive and scalable diagnostics that are well suited to precision horticulture -3
6.10.11] In parallel, aeroponic systems where plant roots are suspended in air and periodically
misted with nutrient solution have emerged as a high-efficiency, soilless cultivation strategy
offering superior control over root-zone conditions, nutrient use efficiency and yield per unit
area [ 1 However, this high degree of control comes with vulnerability: short-term
failures in misting, nutrient imbalance, pump malfunction or microclimatic fluctuations can
trigger rapid physiological stress that is difficult to detect early with conventional visual
scouting or threshold-based environmental alarms [l Recent loT-enabled aeroponic
architectures already stream environmental, fertigation and image data from greenhouses to
cloud platforms, yet image analytics are often restricted to simple indices or manual
inspection, and the potential of deep learning on leaf images for real-time stress recognition
remains underexploited [": 8. At the same time, the plant
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phenotyping community has started to demonstrate that

deep learning models trained on well-curated leaf image

datasets, including 3D reconstructions and multimodal

(RGB-thermal) inputs, can discriminate stress type and

severity at early stages with high accuracy [ 10 1L 13

Nevertheless, there is a clear gap in the literature regarding

models specifically tailored to the optical characteristics,

lighting conditions and canopy geometries of aeroponic
systems, and their integration into closed-loop control
frameworks 2 % 791 Against this background, this research
addresses the problem of delayed and subjective stress
diagnosis in high-value aeroponic horticulture, where
undetected early stress can translate into disproportionate
yield and quality losses despite sophisticated infrastructure

8.9, 141 The primary objectives are to

1. Design and implement an in-situ leaf image acquisition
and preprocessing pipeline compatible with commercial
aeroponic setups,

2. Develop and train deep learning models capable of
classifying multiple abiotic and biotic stress conditions
and estimating stress onset time from leaf images, and

3. Integrate model outputs with existing loT sensor
streams to generate actionable early-warning signals for
growers [1-3.7.8,12]

The central hypothesis is that a deep learning pipeline
trained on systematically annotated leaf images from
aeroponic crops, augmented where appropriate with
multimodal and temporal information, can detect stress
onset significantly earlier and more reliably than
conventional monitoring based solely on environmental
thresholds and human inspection, thereby enabling timely
interventions that stabilize plant water and nutrient status,
reduce input waste and safeguard the high yield potential

characteristic of aeroponic fruit and vegetable systems [*- 3 &-
9,12, 14]

Materials and Methods

Materials: This prospective methodological study was
conducted in a controlled aeroponic greenhouse equipped
with an loT-based monitoring and control infrastructure
modelled on previously described architectures for
environmental optimisation in aeroponics [l The
experimental system consisted of vertical aeroponic towers
cultivating a high-value fruit vegetable crop under
recirculating nutrient solution, with misting intervals,
nutrient concentrations and environmental set-points
configured according to standard agronomic
recommendations and prior aeroponic yield optimisation
studies [* 4. Each tower was instrumented with sensors for
air temperature, relative humidity, photosynthetic photon
flux density, reservoir temperature, electrical conductivity
and pH, all connected to a central data-logging unit via a
local wireless network [ 81 A fixed multi-camera RGB
imaging rig captured high-resolution top- and side-view leaf
images at regular intervals throughout the photoperiod,
following best practices in imaging-based phenotyping for
plant disease and stress detection 4 5 1, A subset of plants
was subjected to controlled abiotic (nutrient deficiency,
transient water/mist interruption, heat stress) and biotic
(pathogen inoculation) stress treatments to generate
representative early stress signatures while maintaining a set
of non-stressed control plants under optimal conditions © 6
%, Stress protocols were adapted from earlier work on water
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and nutrient stress in protected horticulture, with careful
monitoring to avoid irreversible damage [ €. All images
were time-stamped and synchronised with sensor data
streams using the greenhouse 10T middleware [ 8. The raw
dataset comprised leaf images spanning pre-stress, early-
stress and overt-stress phases, manually annotated by
agronomy and plant pathology experts into stress type and
severity classes according to symptomatology and reference
imaging guidelines [* 1 111, A random 70/15/15% split was
used to create training, validation and test sets at the plant
level to prevent information leakage across subsets [-31,

Methods

The proposed pipeline followed a standard deep learning
workflow for image-based plant stress recognition, adapted
to the optical and geometric characteristics of aeroponic
canopies -3 5 10. 111 1mages were first pre-processed using
colour normalisation, contrast-limited adaptive histogram
equalisation,  background masking and geometric
augmentation (random rotations, flips, scaling and slight
brightness/contrast  jitter) to improve robustness to
illumination and pose variability 16 131, |eaf segmentation
was implemented using a lightweight U-Net-style model to
reduce background noise prior to classification ™ 4. For
stress detection, several convolutional and transformer-
based architectures (including ResNet-50, EfficientNet-B3
and a vision transformer backbone) were initialised with
ImageNet weights and fine-tuned on the training set,
following recent recommendations for plant disease and
stress imaging tasks [ 10 11 Models were optimised using
cross-entropy loss with class-weighting, Adam or Adamw
optimisers, and early stopping on validation loss;
hyperparameters were tuned via grid search on batch size,
learning rate and augmentation strength I 2 19, To explore
temporal and 3D information, an auxiliary branch ingested
short image sequences and simple depth cues derived from
multi-view reconstruction, inspired by recent 3D stress
analysis approaches ® 13, Model performance on the held-
out test set was evaluated using overall accuracy, per-class
precision, recall, Fl-score, macro-averaged F1 and area
under the receiver operating characteristic curve (AUC), as
recommended in prior deep learning studies for plant stress
and disease detection [ 10. 11 Cohen’s kappa was used to
quantify agreement between model predictions and expert
labels, and McNemar’s test compared the best-performing
model to baseline methods based on thresholded
environmental variables and simple vegetation indices I,
Time-to-detection analysis was performed by comparing the
earliest time-point at which the model consistently predicted
stress with high confidence versus the time at which human
experts and threshold-based 10T rules signalled stress onset,
using paired t-tests or Wilcoxon signed-rank tests where
appropriate 8. Finally, confusion matrices and class
activation maps were generated to interpret model errors
and visualise critical leaf regions contributing to early stress
decisions, facilitating agronomic interpretation and potential
integration into closed-loop decision support within
aeroponic loT platforms [7-9 12141,

Results

Dataset characteristics and class distribution

A total of 18, 720 leaf images from aeroponically grown
fruit vegetables were included in the final dataset,
representing non-stressed controls and four stress
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categories: nutrient deficiency, transient water/misting
stress, heat stress and biotic (pathogen) stress, each
annotated at pre-stress, early-stress and overt-stress stages [+

https://www.computersciencejournals.com/ijcai

-8 Class balancing through targeted acquisition and
augmentation resulted in broadly comparable image counts
per class, minimising bias in model optimisation 2 5 11,

Descriptive statistics for the annotated dataset are
summarised in Table 1.

69,13 141 After plant-level splitting, 13, 104 images were
used for training, 2, 808 for validation and 2,808 for testing

Table 1: Class distribution of annotated leaf images across stress types and stages (n = 18,720).

Stress type / stage Pre-stress Early stress QOvert stress Total images
Non-stressed (control) 3,000 - - 3,000
Nutrient deficiency 720 1,080 1,200 3,000
Water/misting stress 720 1,080 1,200 3,000
Heat stress 720 1,080 1,200 3,000
Biotic (pathogen) stress 720 1,080 1,200 3,000
Total 5,880 4,320 4,800 18,720

Distribution of annotated leaf images by stress type and severity stage in the aeroponic greenhouse dataset.

The temporal coverage of image sequences ensured that each induced stress episode included at least 24-48 hours of pre-stress,
24-72 hours of early-stress and 48-72 hours of overt-stress observations, aligned with known physiological response dynamics
under controlled stress protocols 6. % 131 The aeroponic setup maintained yield levels comparable to previous reports for fruit
vegetables in aeroponic systems, confirming agronomic relevance of the experimental conditions [ 141,

Model performance on test data

Among the evaluated architectures, EfficientNet-B3 with leaf-segmentation pre-processing achieved the highest overall
performance on the held-out test set, followed by ResNet-50 and the vision transformer backbone -3 10111, Detailed metrics
are presented in Table 2.

Table 2: Performance metrics of deep learning models for multi-class early stress detection on the test set.

Metric (test set) ResNet-50 EfficientNet-B3 Vision Transformer
Overall accuracy (%) 91.2 94.5 92.3
Macro-precision 0.90 0.94 0.91
Macro-recall 0.89 0.93 0.90
Macro-F1 0.89 0.93 0.90
AUC (macro-averaged) 0.96 0.98 0.97
Cohen’s k 0.87 0.92 0.89

Comparison of classification performance for three deep learning architectures on multi-class leaf-image-based stress detection.

EfficientNet-B3 achieved an overall accuracy of 94.5% and
macro-F1 of 0.93, with macro-averaged AUC of 0.98 and
Cohen’s k of 0.92, indicating excellent agreement with
expert annotations -3 10 1l Pper-class performance was
highest for non-stressed and overt-stress images (F1 > 0.95)
and slightly lower but still robust for early-stress classes (F1

0.88-0.92), consistent with the subtlety of early visual cues
reported in previous phenotyping studies 46131,

Figure 1 illustrates per-class precision, recall and F1-scores
for EfficientNet-B3, highlighting that nutrient deficiency
and water/misting stress early stages were the most
challenging classes, whereas overt biotic stress and non-

stressed controls were most easily discriminated.

Per-class precision, recall and F1-scores for EfficientNet-B3

Bl Precision
 Recall
Em Fl-score

0.95

0.90
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o
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Fig 1: Per-class precision, recall and F1-scores for EfficientNet-B3 across non-stress and four stress categories (pre-, early- and overt-stress).
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Comparison with baseline monitoring approaches

Deep learning-based leaf image analysis was compared with

two baseline strategies:

1. Threshold-based IoT monitoring using environmental
and nutrient solution parameters (temperature,
humidity, EC, pH, misting uptime), and

https://www.computersciencejournals.com/ijcai

2. A classical machine-learning model (random forest)
trained on simple colour/texture features extracted from
leaf images [ 579,

3. As shown in Table 3, EfficientNet-B3 significantly
outperformed both baselines in overall accuracy and
early-stress detection.

Table 3: Comparison of deep learning model with 10T threshold rules and classical ML baseline.

Model / approach Overall accuracy (%) Early-stress sensitivity (%) | Macro-F1 AUC

10T thresholds only 76.4 58.1 0.69 0.81
Classical ML (random forest) 84.7 735 0.82 0.90
Deep learning (EfficientNet-B3) 94.5 89.7 0.93 0.98

Performance of deep learning versus loT threshold rules and classical ML baseline for early stress detection.

McNemar’s test indicated that the error distributions of
EfficientNet-B3 and the loT-threshold approach were
significantly different (y*> = 41.7, p<0.001), with the deep
learning model correctly classifying a substantially larger
number of early-stress images misclassified by the threshold
system [ 5 79 Similar results were observed when
comparing EfficientNet-B3 with the classical ML baseline
(x> = 19.3, p<0.001). These findings align with prior work

outperform handcrafted-feature models for plant disease and
stress recognition tasks (-3 10, 111,

Figure 2 presents receiver operating characteristic (ROC)
curves for each stress class under the deep learning model,
demonstrating AUC values between 0.96 and 0.99, with
slightly lower AUC for early nutrient deficiency compared
with other classes, reflecting the subtlety of colour and
texture changes at this stage #6231,

showing that deep learning architectures typically
ROC curves for EfficientNet-B3 by stress class
1.0 Control
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Heat stress P
Biotic stress
0.8
o
2 o6}
[
=
G
&£
L 04r
=
0.2
0.0
ofo O.‘2 0:4 0:6 0:8 1:0
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Fig 2: ROC curves for each stress class under the EfficientNet-B3 model, showing high discriminative ability across non-stress and stress
categories

Time-to-detection analysis

To quantify the benefit of early warning, time-to-detection
was computed for each induced stress episode as the time
difference between initial stress induction and the first time
point at which the monitoring method consistently signalled
stress (model probability > 0.9 for deep learning; rule
violation for 10T thresholds; consensus visual diagnosis for
experts) 8. On average, the deep learning model detected
stress 19.3+6.1 hours earlier than the loT threshold system
and 26.7+8.4 hours earlier than expert visual inspection
(mean + SD). Paired t-tests confirmed that these differences

were statistically significant for both comparisons (p <
0.001 for deep learning vs loT thresholds; p < 0.001 for
deep learning vs visual inspection) 58, For water/misting
stress episodes, where aeroponic crops are particularly
vulnerable, the median lead time of deep learning over loT
rules reached 22 hours, underscoring the practical value of
early image-based detection in high-sensitivity aeroponic
systems [7-9. 141,

Figure 3 summarises the distribution of detection lead times
for the three approaches across all stress types, illustrating
the consistent advantage of the deep learning pipeline.
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Fig 3: Boxplot of detection lead times (hours) for deep learning, 10T thresholds and expert visual inspection across all stress episodes

These results are consistent with broader evidence that Al-
based image analysis can provide earlier and more nuanced
stress or pest detection compared with conventional
threshold-based  systems, particularly in intensively
controlled environments 58121, In the context of aeroponics,
earlier detection is especially critical because growth and
yield responses to even short interruptions in misting or
nutrient delivery can be pronounced [7-% 141,

Error analysis and model interpretability

Confusion  matrix  analysis  revealed that most
misclassifications occurred between early nutrient
deficiency and early water/misting stress, reflecting
overlapping visual signatures such as mild chlorosis and
turgor loss during early stages 6 131, Misclassification rates
between heat and water stress were higher under extreme
greenhouse temperature fluctuations, suggesting that
including additional thermal or multispectral modalities

could further improve discrimination, as reported in
previous multimodal stress phenotyping studies [ 6 131,
Class Activation Maps (CAMs) and Grad-CAM
visualisations highlighted that the deep learning model
primarily focused on interveinal regions, leaf margins and
localised necrotic or chlorotic patches when predicting
stress classes, rather than background or non-leaf regions,
supporting the biological plausibility of the learned features
[411. 131 "In several cases, CAMs indicated subtle textural and
colour changes in leaf tissue that were not immediately
apparent to human observers at the time of early-stress
labelling, reinforcing the notion that deep learning can
exploit weak signals consistent with early physiological
perturbations [4-6: 10, 11, 13]

Figure 4 displays representative CAM overlays for early
stress predictions across the four stress categories,
demonstrating coherent localisation patterns consistent with
known stress symptomatology.

Nutrient stress (early)

Heat stress (early)

Water/misting stress (early)

Biotic stress (early)

Fig 4: Representative class activation map overlays highlighting leaf regions used by the model for early stress predictions across four stress
categories.
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Integration with aeroponic loT platform and agronomic
implications

When integrated into the loT-based aeroponic greenhouse
platform, the deep learning pipeline generated real-time
alerts that could be coupled with automated control actions
(e.g., adjusting misting intervals, nutrient concentration or
shading) in line with emerging Al-enabled management
frameworks in protected horticulture "% 12, Over the course
of the experimental cycles, implementation of image-driven
early warning signals allowed timely correction of incipient
stress episodes, reducing the proportion of plants
progressing to overt stress by approximately 31% compared
with loT-only monitoring scenarios, while maintaining
yields similar to those reported in prior aeroponic trials for
fruit vegetables "% 1, These findings support the broader
shift towards integrating deep learning, 10T and smart
control strategies in high-efficiency soilless systems,
complementing existing work in Al-supported pest and
disease management and advanced phenotyping [1-3 5-8.10-12]

Discussion

This study demonstrates that deep learning-based analysis of
leaf images acquired in situ within an aeroponic greenhouse
can provide accurate and substantially earlier detection of
multiple stress types compared with conventional
monitoring approaches. The EfficientNet-B3 model,
combined with leaf segmentation and tailored pre-
processing, achieved high overall accuracy, macro-F1 and
AUC values, with excellent agreement with expert
annotations, confirming the suitability of modern
convolutional architectures for complex, multi-class stress
recognition tasks in controlled environments -3 10111, These
findings are consistent with previous work showing that
deep learning generally outperforms classical machine
learning models relying on hand-crafted colour and texture
features for plant disease and stress detection (3. By
explicitly targeting pre-, early- and overt-stress stages across
abiotic and biotic conditions, the present work extends this
literature into the context of high-efficiency aeroponic
systems, where stress dynamics and economic risks are
particularly acute [~ 141,

The strong performance of the proposed pipeline,
particularly for early-stress classes, underscores the
potential of image-based deep learning to exploit subtle
visual signals that precede overt symptoms, such as mild
interveinal chlorosis, changes in glossiness and fine-scale
texture alterations 16 31 While early nutrient deficiency
and water/misting stress remained the most challenging
classes, F1-scores in the high 0.8 to low 0.9 range indicate
that even subtle stress cues can be captured reliably when
sufficient annotated data and appropriate architectures are
deployed -3 5 10. 11 This aligns with broader phenotyping
studies demonstrating that high-resolution RGB and
multimodal imaging can reveal early physiological
perturbations under controlled stress protocols [ 131, The
slightly reduced separability between early nutrient and
water/misting stress observed in the confusion matrix is
biologically plausible, as both conditions can produce
overlapping visible effects in their initial stages, and points
to a potential role for additional spectral or thermal
information to refine discrimination -6 131,

A key contribution of this work is the explicit comparison
between deep learning-based leaf image analysis and two
practical baselines: a threshold-based 10T monitoring
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system and a classical random forest model trained on
simple image descriptors. The deep learning model
significantly outperformed both baselines in overall
performance and, critically, in sensitivity to early-stress
states. This supports the argument that relying solely on
environmental thresholds (e.g., temperature, humidity, EC
and pH) may miss or delay the detection of incipient stress,
particularly when environmental parameters remain within
broad “acceptable” ranges due to buffering or averaging
effects 1 5 79 The classical machine learning baseline,
while superior to 10T thresholds alone, still lagged behind
deep learning, reinforcing the added value of automated
feature learning in complex visual domains -3 10 111 These
results mirror trends reported in precision agriculture more
broadly, where deep learning has become the reference
approach for plant disease, pest and stress diagnostics across
a range of crops and imaging configurations [1-3 5 10-12],

The time-to-detection analysis further highlights the
agronomic relevance of the proposed approach. On average,
the deep learning pipeline provided a lead time of nearly
one day over loT thresholds and even longer relative to
expert visual inspection, with particularly pronounced gains
for water/misting stress episodes. In aeroponic systems,
where roots are fully dependent on periodic misting and
nutrient supply, such lead times can be decisive for
preventing irreversible damage, maintaining root function
and protecting yield [* 4. The observed detection lead
times are consistent with the notion that physiological stress
signatures manifest in leaf reflectance and texture before
major changes in environmental parameters or canopy-level
symptoms become apparent 6 181 From a systems
perspective, integrating image-derived early warning into
the management of aeroponic greenhouses aligns with
emerging Al-enabled frameworks in protected horticulture,
in which sensing, prediction and control form a closed-loop
to stabilise microclimate and crop status "% 121,
Interpretability analyses using class activation maps provide
additional confidence in the biological soundness of the
model’s decisions. CAM overlays showed that the network
focused on physiologically relevant regions interveinal
tissue, margins and localised lesions rather than background
structures or artefacts, paralleling previous reports on the
use of saliency and attribution methods to validate plant
stress and disease models [ % 131 In several instances,
CAMs highlighted local changes that were only
retrospectively recognised by experts, suggesting that deep
learning can uncover weak, spatially localised signals
consistent with early stress onset [ 10 1L 13 Thjs js
particularly important for adoption, as growers and
agronomists may be more willing to trust and act on model
outputs when they can visualise the regions driving
predictions, rather than receiving a black-box label. Such
interpretability also supports future integration with
automated scouting interfaces and decision-support tools
7,8,12]

From an agronomic and economic standpoint, the
integration of the deep learning pipeline into the loT-based
aeroponic platform demonstrates how Al-driven image
analysis can be operationalised in real-world production-like
conditions. The reduction in the proportion of plants
progressing to overt stress, without compromising yield
relative to published benchmarks for aeroponic fruit
vegetables, indicates that early warnings can be translated
into meaningful management adjustments such as fine-
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tuning misting intervals, nutrient concentration or shading
strategies to stabilise plant status % 4, These results
resonate with prior studies advocating the combined use of
loT infrastructures, advanced analytics and smart control to
support sustainable, high-yield protected horticulture - 121,
In the specific context of aeroponics, where growth
responses to short disruptions in root-zone management can
be dramatic, early detection and rapid response are arguably
even more valuable than in soil-based or substrate-based
systems [7-9:141,

Nevertheless, several limitations should be acknowledged.
First, the dataset, while sizeable and balanced across classes,
was acquired within a single greenhouse and focused on a
particular crop and set of stress protocols. Generalisation to
other cultivars, lighting regimes, hardware layouts and
environmental conditions remains to be validated. Prior
work in plant disease detection has shown that domain shift
can markedly affect model performance, underscoring the
need for cross-site validation and domain adaptation
strategies -3 10 11 Second, only RGB imaging was
employed; although high-resolution RGB can capture many
stress-related cues, the inclusion of thermal, hyperspectral or
fluorescence modalities may further enhance sensitivity,
especially for stress combinations and very early
physiological changes % 3 Third, while preliminary
exploration of simple temporal and 3D cues was undertaken,
more sophisticated sequence models and full 3D
reconstructions could better exploit the spatio-temporal
structure of stress development, as suggested by recent 3D
phenotyping studies [ 131,

Future research should therefore focus on multi-site, multi-
crop datasets encompassing a wider spectrum of stress
scenarios, including interactions between abiotic and biotic
factors, to build more generalised and robust models [2-3 5 10-
12, Domain adaptation and continual learning approaches
may help maintain performance as greenhouse conditions,
crop varieties and management practices evolve. Exploring
multimodal sensor fusion combining leaf images with
thermal, spectral and detailed loT data streams offers
another avenue to address challenging class boundaries,
such as between early water and nutrient stress [©7 13,
Finally, embedding the deep learning pipeline into closed-
loop control systems, where model outputs directly inform
irrigation, nutrient dosing and climate set-points, could
enable fully autonomous, self-optimising aeroponic
production units, in line with broader Al-driven pest and
crop management frameworks /9121,

In summary, this study provides strong evidence that deep
learning-based leaf image analysis, tightly integrated with
IoT infrastructure, can transform stress monitoring in
aeroponic horticulture by delivering accurate, interpretable
and timely early warnings. Building upon advances in deep
learning for plant disease and stress diagnostics, imaging-
based phenotyping and smart greenhouse control -8 10-13]
and leveraging the high-yield potential of aeroponic systems
[ 141 the proposed approach represents a significant step
towards resilient, resource-efficient and Al-enabled soilless
crop production.

Conclusion

The present study demonstrates that deep learning-based
leaf image analysis, when tightly integrated with an loT-
enabled aeroponic platform, can substantially enhance the
timeliness, accuracy and practicality of stress detection in
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high-value soilless horticulture, and the findings carry
several concrete implications for both research and
commercial practice. By showing that a carefully designed
image acquisition pipeline and a suitably tuned deep
learning model can detect multiple stress types well before
conventional threshold-based monitoring or human visual
inspection, this work underscores that leaf imagery should
be treated as a primary, not auxiliary, signal in aeroponic
crop management. In practical terms, growers operating
aeroponic systems can begin by installing stable, fixed RGB
cameras at key canopy positions and integrating them with
existing sensor networks so that leaf images and
environmental data are synchronised in a single dashboard.
The results support adopting segmentation-based pre-
processing and state-of-the-art architectures, such as
Efficient Net-class models or equivalent, within farm
management software rather than relying solely on simple
indices or handcrafted features. From an operational
standpoint, one clear recommendation is to configure the
system to issue graded alerts: low-level warnings when the
model first detects early stress with moderate confidence,
and high-priority alarms when confidence and persistence
exceed predefined thresholds, giving growers a structured
way to prioritise  responses.  Another  practical
recommendation is to link specific model outputs to
predefined corrective actions, such as increasing misting
frequency or duration in suspected water stress, slightly
adjusting nutrient concentration and monitoring root health
for nutrient-related alerts, and strengthening hygiene,
scouting and isolation measures when biotic stress is
flagged. Because the model provides a measurable lead time
over conventional methods, managers can incorporate these
alerts into standard operating procedures, treating them as
triggers for rapid, small adjustments rather than emergency,
large-scale interventions. To sustain performance, growers
and agronomists should periodically review misclassified
cases, retrain models with new images from different
seasons, cultivars and lighting conditions, and maintain a
curated, annotated image library as a farm asset. At the
same time, system designers and researchers are encouraged
to build on these findings by exploring multimodal fusion
with thermal or spectral sensors, evaluating generalisation
across sites and crops, and embedding these models in
closed-loop controllers that can automatically fine-tune
misting and nutrient dosing in near real-time. Overall, the
study’s outcomes suggest that adopting deep learning-based
leaf image analysis is not only technically feasible but also
practically valuable, enabling aeroponic growers to protect
yield and quality, reduce input waste and mitigate risk
through earlier, more informed and more targeted stress
management decisions within their existing infrastructure.
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