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Abstract 
Crop health monitoring remains a major challenge in agriculture due to region-specific variations in 

diseases, insect infestations, and nutrient deficiencies. This paper proposes a deep learning-driven 

framework that provides precise crop intelligence across six major crops: Wheat, Paddy, Potato, 

Cotton, Mustard, and Kinnow. Transfer learning was applied on three pre-trained convolutional neural 

network models: ResNet-50, VGG16, and EfficientNet-B0, revealing that ResNet-50 achieved the 

highest accuracy of 95.2%. The model clearly distinguishes between diseases, insects, and nutrient 

deficiencies across different climates, with region-based data augmentation improving its flexibility. 

This is supported by experiments showing that the framework is scalable and capable of real-time 

performance, achieving inference times below 0.5 seconds per image. The proposed approach supports 

the way for precision agriculture by enabling early detection, targeted management, and scalable 

deployment across diverse agro-ecological zones. 
 

Keywords: Deep learning, crop disease monitoring, precision agriculture, convolutional neural 

networks, region-specific intelligence 

 

Introduction 
Diseases attacking crops, insect pests, and lack of nutrients are among the primary causes of 

significant drops in agricultural yield, particularly in the stringent climatic and environmental 

conditions [1, 2]. One of the main contributors to this problem is the difficulty of accurately 

detecting diseases and insects in early stages, and the solution to this problem is already 

provided by deep learning, particularly Convolutional Neural Networks (CNN), which have 

revolutionized precision agriculture through automated image-based detection of crop health 

problems [3, 4]. This is, however, a task that is still hampered by the regional differences and 

the diversity of diseases there and hence necessitates further advancements [5, 6].  

The current study solves the above-mentioned problems by developing a deep learning 

classification framework which is trained on a properly managed image dataset containing 

six different crops and subcategories based on diseases, insects, and nutrient deficiencies, 

which are labeled in an unambiguous way to facilitate proper training of the model. Among 

the three models considered, ResNet-50, VGG16, and EfficientNet-B0, the best one will be 

selected based on confusion metrics and then trained on the entire dataset. Our approach 

integrates deep learning with region-specific crop knowledge in order to achieve a better 

level of accuracy for the detection of different diseases in various agricultural lands. Our 

goals are: (1) to build a reliable classifier for the detection of crop health problems, (2) to 

incorporate region-specific intelligence, and (3) to assess the model’s performance across 

different agricultural areas. A unique dataset structure, a high-performing model, and the 

realization of deep learning models’ scalability and adaptability in agriculture are among the 

contributions made. 

 

1.1 Background and Motivation 

Crop diseases are a major problem for the agricultural sector, leading to considerable losses 

in yield. One of the main advantages of deep learning is its ability to, at least in part, 

automate the process of detecting diseases, but in order for it to be used in a specific region, 

it should be accurately and appropriately conditioned by the factors that are particular to that 

area.  
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1.2 Problem Statement 

The existing systems for monitoring crop diseases are not 

able to cope with the differences between the regions and, 

hence, their effectiveness is severely limited across different 

agricultural areas. Therefore, the need is for a deeper 

learning based system of disease detection that is accurate 

and specific to the region, and it should be a system that is 

scalable.  

 

1.3 Objectives and Contributions  

The main objective of the present study is to build a deep 

learning-based model that will classify the crop health 

problems and include surface intelligence specific to the 

geographical area. One of the contributions of this study is a 

well-organized dataset along with a highly accurate model 

for the purpose of monitoring diseases according to specific 

regions. 

 

2. Literature Review 

2.1 Deep Learning Applications in Agriculture 

Deep learning has brought a significant change in the 

agricultural field by allowing the automatic identification of 

diseases and insects on crops [3, 4]. Convolutional Neural 

Networks (CNNs) have performed extraordinarily well in 

the classification of plant diseases based on images, even 

using large datasets to become highly accurate [1, 7]. For 

example, Dolatabadian et al. (2024) gave an extensive 

review of the methods applied for image-based crop disease 

detection via machine learning and pointed out that deep 

learning could be an alternative to traditional manual 

inspections particularly through the integration of advanced 

image processing techniques that would be faster and more 

accurate [1]. Likewise, A et al. (2022) proved the capability 

of deep learning models for detecting leaf diseases in crops 

by using pre-trained CNN architectures such as DenseNet-

121 which managed to achieve a remarkable 99.81% 

classification accuracy on the PlantVillage dataset and even 

outperforming other models like ResNet-50 and VGG16 

through transfer learning and data augmentation to avoid 

overfitting [7]. A thorough review by Rai et al. (2023) has 

additionally sketched the up-to-date developments in deep 

learning for precision agriculture, putting weed management 

in the spotlight, while at the same time pointing out that 

deep learning techniques are suitable for other applications 

as crop health monitoring, including using object detection 

models for site-specific interventions [10]. 

Beginning with these established principles, a major 

application of deep learning in plant disease detection 

through images by Mohanty et al. (2016) led to the creation 

of the models with AlexNet and GoogLeNet trained on the 

vast PlantVillage dataset of more than 54,000 plants/images, 

coming from 14 crops and 26 diseases, achieving even up to 

99.35% accuracy through transfer learning, but nonetheless 

noting difficulties with generalization to actual images [13]. 

Saleem et al. (2019) went a step further by considering DL 

structures like ResNet and VGG along with hyperspectral 

imaging for earlier detection, setting accuracies as high as 

98.90% and citing heat maps among the visualization 

techniques for revealing the symptoms [3]. Hasan et al. 

(2020) analyzed DL for plant diseases in a sweeping manner 

and conversed about CNN variations like YOLOv3 for real-

time detection and GANs for data augmentation with 

models attaining 99.24% precision, while still tackling the 

issues of limited dataset diversity and environmental 

adaptability [4]. More recently, Demilie (2024) compared the 

performances of DL and ML methods, claiming that CNNs 

frequently exceed the accuracy of traditional ones, with the 

latter being as high as 99.98%, and thus recommending 

hybrid systems along with new architectures like PPLCNet 

for better disease classification and efficiency [14]. Jung et al. 

(2023) were engaged in a DL-centered model creation that 

includes pre-trained CNNs like EfficientNet and ResNet50 

which were able to reach almost flawless accuracy, in some 

cases (up to 100%) in classifying diseases of crops such as 

bell pepper, potato and tomato, thus stressing the necessity 

of consecutive classification in linking agriculture to 

modern science [9]. Altogether, these studies not only 

highlight but very clearly show the power of Deep Learning 

systems in bringing the automation and scaling of disease 

detection, as well as in making precision farming more 

efficient through the increase of accuracy combined with the 

decrease of expert reliance. 

 

2.2 Crop Disease Monitoring Systems 

Crop disease monitoring systems have gone through a 

transformation from manual inspections to AI-powered 

solutions [5, 6]. Sujatha et al. (2020) made a deep learning-

based model for the identification of crop diseases and they 

also stressed the need for well-categorized datasets; 

moreover, they did a comparison of DL with ML techniques 

and found that DL approach produces better accuracy in 

classification, thus being more capable of the identification 

of complex leaf diseases [5]. Wang et al. (2020) used better 

CNNs and data augmentation to make the model more 

robust, and the technique they used is very important in our 

method; their work was training six specifically-enriched-

CNN-models to find 26 diseases in 14 crops, and then they 

picked the best one that gave accuracy and efficiency 

balance for practical use [6]. Demilie (2024) undertook a 

comparison of the deep learning models for crop disease 

detection, and by the way, the accuracy of the model 

selection and the CNNs’ superiority over the ML in 

handling large datasets were also the points that were made; 

for instance, the accuracies for certain crops such as rice 

even reached 99.7% [14]. 

Mansoor et al. (2025) went another step ahead with the 

monitoring systems by coming up with an IoT and AI-based 

structure that not only connects smart sensors for real-time 

data collection on soil, plant stress, and pests but also allows 

for predictive analytics for disease outbreaks and supports 

the use of region-specific interventions through ML 

algorithms that are adaptable to the different regions [2]. In 

the same year, Singh et al. (2024) made a smart agriculture 

drone system with the help of image processing and ML 

techniques; they were able to identify the crops like 

pineapple and papaya through the object detection done by 

EfficientDetLite1, and they achieved 100% detection 

success rate at the optimum altitudes while the targeted 

spraying was made possible which minimized the use of 

pesticides and improved the management of diseases [12]. 

These innovations highlight the shift toward integrated, 

automated systems that combine DL with hardware like 

drones and sensors, improving robustness and scalability in 

crop disease monitoring. 

 

2.3 Region-Specific Challenges in Agricultural AI 

Regional distinctives, like weather and soil types, are among 

the major determinants of the occurrence and distribution of 

https://www.computersciencejournals.com/ijcai


International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai 

~ 225 ~ 

diseases [2, 8]. The research by Mansoor et al. (2025) is based 

on the, IoT and AI, which are the main technologies of the 

future, for the monitoring of the crop diseases in the specific 

areas; it, however, stresses the analysis of sensor data for the 

adaptability of handling such variables as humidity and 

temperature that can actually predict the occurrence of 

diseases in different climates [2]. Borhani et al. (2022) came 

up with a solution through the use of deep learning models 

that are adjusted to the regional differences, and the 

implementation of Vision Transformers (ViT) for the 

purpose of automatic plant disease classification of datasets 

such as Wheat Rust and Rice Leaf Disease, succeeding in 

the attainment of very high accuracies, which are nearly as 

good as those of CNNs while it offers faster prediction 

speeds in hybrid models and, at the same time, solving the 

problem of wide-ranging field conditions [8]. Jung et al. 

(2023) have been working on the creation of DL models that 

exploit the regional aspects in certain cases, and they have 

especially mentioned tomatoes grown in controlled 

conditions. They have been able to reach an accuracy of 

99.75% but they have also realized that the performance 

drops considerably when operating on the images of lesions 

taken from various regions, thus raising the need for 

providing an ample supply of training data from diverse 

sources [9]. Also presenting a different scenario, Gulzar et al. 

(2024) used deep learning to tell apart among alfalfa 

varieties based on a custom leaf image dataset of 1,214 

images and compared different models like ResNet and 

EfficientNet achieving high accuracy in recognizing 

different varieties under various environmental conditions, 

that could be even applied as a screening of variety-specific 

disease susceptibilities in regions like arid or temperate 

zones [11]. 

The studies highlight the need for flexible AI systems that 

can cater to different regions, for instance, through transfer 

learning and data augmentation, which are methods for 

capturing the distinct patterns of diseases induced by 

climate in a particular place. For instance, the use of 

hyperspectral imaging, which has been mentioned in wider 

reviews [4], might be able to increase the detection 

capabilities in the humid tropics and dry lands, where 

certain organisms might be made worse by the humidity. In 

short, the ongoing creation of these datasets and models that 

have geospatial metadata included in them for better 

spreading across agricultural zones is the way to go when it 

comes to tackling these challenges. 

 

3. Dataset Description  

3.1 Image Dataset Overview 

The structure of the dataset facilitates efficient organization 

and analysis of crop health conditions by regions. At the top 

level, folders are allocated to various crops (Wheat, Paddy, 

Potato, Cotton, Mustard, Kinnow) respectively. Under each 

crop folder, there are three major sub-divisions - diseases, 

insects, and nutrient deficiencies, which are consistently 

named and described to support easy identification and 

model training. 

More particularly, the naming pattern adheres to the 

following formats: 

● Crop_Disease_(Name of the disease), for example, 

Wheat_Disease_Rust, Paddy_Disease_Blight 

● Crop_Insect_(Name of the insect), for instance, 

Wheat_Insect_Armyworm, 

Paddy_Insect_BrownPlanthopper 

● Crop_Deficiency_(Name of the deficiency), like, 

Wheat_Deficiency_Nitrogen, 

Paddy_Deficiency_Potassium 

 

In turn, every subfolder takes in a number of .jpg images 

that illustrate the related condition in natural field settings. 

Thus, this structure not only maintains region-specific 

labeling consistencies but also clearly distinguishes disease, 

insect, and nutrient deficiency categories. Such an organized 

hierarchy not only boosts model interpretability but also 

enables the framework to recognize variations related to 

different geographical and climatic regions.  

In a similar way to our approach, Singh et al. (2024) 

produced a dataset of 177 images for crop identification 

(pineapple, papaya, and cabbage) using a smart agriculture 

drone system, which supports evaluation standards for 

targeted disease management across different areas [12]. One 

of the advantages of our dataset is the presence of geotagged 

and condition-specific folders that aid in region-based 

learning and enable the model to be more versatile in its 

application to various agricultural areas. 

 

3.2 Data Preprocessing and Augmentation 

Training, the preprocessing of images includes resizing 

them to 224×224 pixels and normalizing pixel intensity 

values to a (0,1) scale thereby maintaining consistency 

across samples. To further reduce the risk of overfitting, it is 

decided random rotation (±30°), horizontal and vertical 

flipping, random zooming, and brightness adjustment will 

all be done as ways of creating and maintaining a strong 

dataset. The augmentations mimic different environmental 

situations by changing lighting and angle; therefore, the 

model can learn better to recognize the unseen field data. 

 

4. Methodology 

4.1 Deep Learning Classification Model 

The experiment compared three deep learning models, 

ResNet-50, VGG16, and EfficientNet-B0, for their ability to 

tell apart crop health conditions: disease, insect attack, and 

nutrient shortage. All models were first trained on ImageNet 

and later adjusted using our region-specific agricultural 

dataset. This study used transfer learning, as it has proven 

useful for disease detection in areas with limited resources. 

The models were trained with the Adam optimizer (learning 

rate 0.001, batch size 32), using categorical cross-entropy as 

the loss function. The best-performing model was chosen 

based on accuracy, precision, recall, and F1-score. 

 

4.2 Model Architecture 

The selected model, ResNet-50, comprises 50 layers 

interconnected through residual (skip) connections, 

effectively addressing the vanishing gradient issue in deep 

networks. In comparison, VGG16 contains 16 convolutional 

layers organized in a straightforward sequential structure, 

while EfficientNet-B0 employs compound scaling to 

balance depth, width, and resolution efficiently. 

The overall workflow of the system is represented in Figure 

1, detailing the sequential stages of preprocessing, 

augmentation, model training, and classification output. 
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Fig 1: System workflow of the crop health classification 
framework. 

 
The workflow presents how the dataset is processed from 
raw field images through preprocessing, augmentation, and 
model training before generating the final classification 
output. This structure ensures that every image passes 
through consistent transformation and validation, allowing  

for accurate and region-specific classification results 
 
4.3 Training Process 
The dataset was divided into 80% training and 20% testing 
subsets, ensuring a balanced representation of each crop and 
condition. The models were trained for 50 epochs, with 
early stopping applied based on validation loss to prevent 
overfitting. 
 
4.4 Evaluation Metrics 
Model performance was evaluated using standard 
classification metrics: accuracy, precision, recall, and F1-
score, computed for each class. These metrics ensure a 
robust evaluation framework capable of assessing the 
model’s effectiveness across diverse real-world field 
conditions. 
 
5. Experiments and Results  
5.1 Experimental Setup  
The dataset comprised 10,000 images across six crops: 
Wheat, Paddy, Potato, Cotton, Mustard and Kinnow, each 
categorized into diseases, insects, and nutrient deficiencies, 
divided into 80% training and 20% testing sets. Region-
specific data was incorporated by tagging images with 
metadata on climate zones (tropical, temperate, arid). 
Training was performed for 50 epochs, with a validation 
split of 20% from the training set to monitor overfitting.  
 
5.2 Classification Performance  
The comparison of the three models showed that ResNet-50 
performed best, reaching an overall accuracy of 95.2%, 
precision of 94.8%, recall of 95.0%, and F1-score of 94.9%. 
VGG16 scored 92.1% accuracy, while EfficientNet-B0 
reached 93.5%. Confusion matrices showed few mistakes 
between diseases and deficiencies, with insect cases being 
classified most accurately (97%). Table 1 compares their 
results. 
 

Table 1: Classification Comparison Of Different Models 
 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

ResNet-50 95.2 94.8 95.0 94.9 

VGG16 92.1 91.8 92.0 91.9 

EfficientNet-B0 93.5 93.2 93.4 93.3 

 
Figure 2 gives a visual comparison, showing that ResNet-50 
stayed ahead across all measures, proving it to be a strong 
choice for region-based crop health classification. 

 

 
 

Fig 2: Model Performance Comparison 
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These results surpass benchmarks from similar studies [14], 

demonstrating the effectiveness of the selected model.  

 

5.3 Region-Specific Disease Monitoring Insights  

When stratified by regions, the model showed varying 

performance: 96.5% accuracy in tropical zones due to 

higher disease prevalence in the dataset, compared to 93.8% 

in arid regions where nutrient deficiencies were more 

common. Insights revealed that environmental factors like 

humidity influenced model predictions, with augmented 

data from specific regions improving generalization by 5-

7%.  

 

5.4 Application Usability and Performance  
The framework was applied as a web-based application for 

monitoring, achieving inference times of under 0.5 seconds 

per image on standard hardware. Usability testing with 20 

farmers indicated high satisfaction (4.5/5 rating). 

 

6. Discussion 

6.1 Implications for Precision Agriculture 

The proposed deep learning framework significantly 

contributes to precision agriculture by enabling early, 

region-specific detection of crop diseases, insect 

infestations, and nutrient deficiencies. By using ResNet-50’s 

high classification accuracy (95.2%) and region-based data 

organization, the system allows for timely and targeted 

interventions, potentially reducing yield losses by 2030%. 

Integration with IoT-based field sensors and satellite-driven 

vegetation indices can further enhance the real-time 

monitoring and automation capabilities of this framework.  

 

6.2 Limitations and Challenges 

Despite its strong performance, the framework faces several 

limitations. Model accuracy depends heavily on the quality 

and diversity of field images, and imbalances in the dataset, 

particularly for crops like Kinnow and Cotton may 

introduce minor classification bias. Additionally, challenges 

persist in low-resource agricultural regions, where limited 

internet access and computational infrastructure restrict 

large-scale use. Lighting variations, overlapping symptoms 

between nutrient deficiencies and early-stage diseases, and 

region-specific environmental differences may also slightly 

affect generalization. Addressing these challenges will 

require broader data collection under diverse agro-climatic 

conditions and continuous retraining using updated regional 

datasets. 

 

6.3 Scalability and Region-Specific Adaptability 

The framework demonstrates strong scalability and 

adaptability through its transfer learning-based design, 

which allows retraining with minimal new data for different 

regions or crop varieties. In future implementations, 

integrating federated learning could enable privacy-

preserving regional updates, where models are trained 

locally and aggregated globally without transferring raw 

data. Such an approach would make the system more robust, 

regionally relevant, and suitable for large-scale agricultural 

use. 

 

7. Conclusion and Future Work 

7.1 Summary of Findings 

This study presented a region-specific deep learning 

framework for crop health monitoring, capable of 

classifying diseases, insect infestations, and nutrient 

deficiencies across six major crops: Wheat, Paddy, Potato, 

Cotton, Mustard and Kinnow. The structured dataset, 

containing 26 well-defined classes, enabled comprehensive 

model training using transfer learning techniques. Among 

the evaluated architectures, ResNet-50 achieved the best 

performance (95.2% accuracy), outperforming VGG16 and 

EfficientNet-B0, while demonstrating strong region-specific 

generalization. These results highlight the framework’s 

potential to serve as a scalable AI solution for real-time 

precision agriculture applications. 

 

7.2 Future Research Directions 

Future research will focus on: 

● Expanding the dataset to include more crop varieties, 

growth stages, and regional diversity to improve model 

robustness. 

● Developing lightweight models for edge computing and 

mobile deployment, enabling offline use in remote 

areas. 

● Exploring federated and continual learning approaches 

to facilitate dynamic, privacy-preserving model updates 

across multiple agricultural zones. 

 

References 

1. Dolatabadian A, Neik TX, Danilevicz MF, Upadhyaya 

SR, Batley J, Edwards D. Image-based crop disease 

detection using machine learning. Plant Pathology. 

2024;73(1):112. https://doi.org/10.1111/ppa.14006 

2. Mansoor S, Iqbal S, Popescu SM, Kim SL, Chung YS, 

Baek J. Integration of smart sensors and IoT in 

precision agriculture: trends, challenges and future 

prospectives. Frontiers in Plant Science. 

2025;16:1587869. 

https://doi.org/10.3389/fpls.2025.1587869 

3. Saleem MH, Potgieter J, Arif KM. Plant disease 

detection and classification by deep learning. Plants. 

2019;8(11):468480. 

https://doi.org/10.3390/plants8110468 

4. Hasan RI, Yusuf SM, Alzubaidi L. Review of the state 

of the art of deep learning for plant diseases: a broad 

analysis and discussion. Plants. 2020;9(10):13021315. 

https://doi.org/10.3390/plants9101302 

5. Sujatha R, Chatterjee JM, Jhanjhi N, Brohi SN. 

Performance of deep learning vs machine learning in 

plant leaf disease detection. Microprocessors and 

Microsystems. 2020;80:103615103624. 

https://doi.org/10.1016/j.micpro.2020.103615 

6. Wang L, Sun J, Wu X, Shen J, Lu B, Tan W. 

Identification of crop diseases using improved 

convolutional neural networks. IET Computer Vision. 

2020;14(7):538545. https://doi.org/10.1049/iet-

cvi.2019.0136 

7. J A, Eunice J, Popescu DE, Chowdary MK, Hemanth J. 

Deep learning-based leaf disease detection in crops 

using images for agricultural applications. Agronomy. 

2022;12(10):23952405. 

https://doi.org/10.3390/agronomy12102395 

8. Borhani Y, Khoramdel J, Najafi E. A deep learning-

based approach for automated plant disease 

classification using vision transformer. Scientific 

Reports. 2022;12(1):110.  

https://www.computersciencejournals.com/ijcai


International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai 

~ 228 ~ 

https://doi.org/10.1038/s41598-022-15163-0 

9. Jung M, Song JS, Shin A, Choi B, Go S, Kwon S, et al. 

Construction of deep learning-based disease detection 

model in plants. Scientific Reports. 2023;13(1):19. 

https://doi.org/10.1038/s41598-023-34549-2 

10. Rai N, Zhang Y, Ram BG, Schumacher L, Yellavajjala 

RK, Bajwa S, Sun X. Applications of deep learning in 

precision weed management: a review. Computers and 

Electronics in Agriculture. 2023;206:107698107720. 

https://doi.org/10.1016/j.compag.2023.107698 

11. Gulzar Y, Ünal Z, Kızıldeniz T, Umar UM. Deep 

learning-based classification of alfalfa varieties: a 

comparative study using a custom leaf image dataset. 

MethodsX. 2024;13:103051103062.  

https://doi.org/10.1016/j.mex.2024.103051 

12. Singh E, Pratap A, Mehta U, Azid SI. Smart agriculture 

drone for crop spraying using image-processing and 

machine learning techniques: experimental validation. 

IoT. 2024;5(2):250270. 

https://doi.org/10.3390/iot5020013 

13. Mohanty SP, Hughes DP, Salathé M. Using deep 

learning for image-based plant disease detection. 

Frontiers in Plant Science. 2016;7:14191428. 

https://doi.org/10.3389/fpls.2016.01419 

14. Demilie WB. Plant disease detection and classification 

techniques: a comparative study of the performances. 

Journal of Big Data. 2024;11(1):114. 

https://doi.org/10.1186/s40537-023-00863-9 

 

https://www.computersciencejournals.com/ijcai

