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Abstract

Crop health monitoring remains a major challenge in agriculture due to region-specific variations in
diseases, insect infestations, and nutrient deficiencies. This paper proposes a deep learning-driven
framework that provides precise crop intelligence across six major crops: Wheat, Paddy, Potato,
Cotton, Mustard, and Kinnow. Transfer learning was applied on three pre-trained convolutional neural
network models: ResNet-50, VGG16, and EfficientNet-BO, revealing that ResNet-50 achieved the
highest accuracy of 95.2%. The model clearly distinguishes between diseases, insects, and nutrient
deficiencies across different climates, with region-based data augmentation improving its flexibility.
This is supported by experiments showing that the framework is scalable and capable of real-time
performance, achieving inference times below 0.5 seconds per image. The proposed approach supports
the way for precision agriculture by enabling early detection, targeted management, and scalable
deployment across diverse agro-ecological zones.

Keywords: Deep learning, crop disease monitoring, precision agriculture, convolutional neural
networks, region-specific intelligence

Introduction

Diseases attacking crops, insect pests, and lack of nutrients are among the primary causes of
significant drops in agricultural yield, particularly in the stringent climatic and environmental
conditions ™ 2, One of the main contributors to this problem is the difficulty of accurately
detecting diseases and insects in early stages, and the solution to this problem is already
provided by deep learning, particularly Convolutional Neural Networks (CNN), which have
revolutionized precision agriculture through automated image-based detection of crop health
problems [ 4l This is, however, a task that is still hampered by the regional differences and
the diversity of diseases there and hence necessitates further advancements [ €1,

The current study solves the above-mentioned problems by developing a deep learning
classification framework which is trained on a properly managed image dataset containing
six different crops and subcategories based on diseases, insects, and nutrient deficiencies,
which are labeled in an unambiguous way to facilitate proper training of the model. Among
the three models considered, ResNet-50, VGG16, and EfficientNet-B0, the best one will be
selected based on confusion metrics and then trained on the entire dataset. Our approach
integrates deep learning with region-specific crop knowledge in order to achieve a better
level of accuracy for the detection of different diseases in various agricultural lands. Our
goals are: (1) to build a reliable classifier for the detection of crop health problems, (2) to
incorporate region-specific intelligence, and (3) to assess the model’s performance across
different agricultural areas. A unique dataset structure, a high-performing model, and the
realization of deep learning models’ scalability and adaptability in agriculture are among the
contributions made.

1.1 Background and Motivation

Crop diseases are a major problem for the agricultural sector, leading to considerable losses
in yield. One of the main advantages of deep learning is its ability to, at least in part,
automate the process of detecting diseases, but in order for it to be used in a specific region,
it should be accurately and appropriately conditioned by the factors that are particular to that
area.
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1.2 Problem Statement

The existing systems for monitoring crop diseases are not
able to cope with the differences between the regions and,
hence, their effectiveness is severely limited across different
agricultural areas. Therefore, the need is for a deeper
learning based system of disease detection that is accurate
and specific to the region, and it should be a system that is
scalable.

1.3 Obijectives and Contributions

The main objective of the present study is to build a deep
learning-based model that will classify the crop health
problems and include surface intelligence specific to the
geographical area. One of the contributions of this study is a
well-organized dataset along with a highly accurate model
for the purpose of monitoring diseases according to specific
regions.

2. Literature Review

2.1 Deep Learning Applications in Agriculture

Deep learning has brought a significant change in the
agricultural field by allowing the automatic identification of
diseases and insects on crops [ 4. Convolutional Neural
Networks (CNNs) have performed extraordinarily well in
the classification of plant diseases based on images, even
using large datasets to become highly accurate ™ 71, For
example, Dolatabadian et al. (2024) gave an extensive
review of the methods applied for image-based crop disease
detection via machine learning and pointed out that deep
learning could be an alternative to traditional manual
inspections particularly through the integration of advanced
image processing techniques that would be faster and more
accurate [, Likewise, A et al. (2022) proved the capability
of deep learning models for detecting leaf diseases in crops
by using pre-trained CNN architectures such as DenseNet-
121 which managed to achieve a remarkable 99.81%
classification accuracy on the PlantVillage dataset and even
outperforming other models like ResNet-50 and VGG16
through transfer learning and data augmentation to avoid
overfitting . A thorough review by Rai et al. (2023) has
additionally sketched the up-to-date developments in deep
learning for precision agriculture, putting weed management
in the spotlight, while at the same time pointing out that
deep learning techniques are suitable for other applications
as crop health monitoring, including using object detection
models for site-specific interventions (1%,

Beginning with these established principles, a major
application of deep learning in plant disease detection
through images by Mohanty et al. (2016) led to the creation
of the models with AlexNet and GoogLeNet trained on the
vast PlantVillage dataset of more than 54,000 plants/images,
coming from 14 crops and 26 diseases, achieving even up to
99.35% accuracy through transfer learning, but nonetheless
noting difficulties with generalization to actual images 3.
Saleem et al. (2019) went a step further by considering DL
structures like ResNet and VGG along with hyperspectral
imaging for earlier detection, setting accuracies as high as
98.90% and citing heat maps among the visualization
techniques for revealing the symptoms [l Hasan et al.
(2020) analyzed DL for plant diseases in a sweeping manner
and conversed about CNN variations like YOLOv3 for real-
time detection and GANs for data augmentation with
models attaining 99.24% precision, while still tackling the
issues of limited dataset diversity and environmental
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adaptability ™. More recently, Demilie (2024) compared the
performances of DL and ML methods, claiming that CNNs
frequently exceed the accuracy of traditional ones, with the
latter being as high as 99.98%, and thus recommending
hybrid systems along with new architectures like PPLCNet
for better disease classification and efficiency 4. Jung et al.
(2023) were engaged in a DL-centered model creation that
includes pre-trained CNNs like EfficientNet and ResNet50
which were able to reach almost flawless accuracy, in some
cases (up to 100%) in classifying diseases of crops such as
bell pepper, potato and tomato, thus stressing the necessity
of consecutive classification in linking agriculture to
modern science [l Altogether, these studies not only
highlight but very clearly show the power of Deep Learning
systems in bringing the automation and scaling of disease
detection, as well as in making precision farming more
efficient through the increase of accuracy combined with the
decrease of expert reliance.

2.2 Crop Disease Monitoring Systems

Crop disease monitoring systems have gone through a
transformation from manual inspections to Al-powered
solutions > 61, Sujatha et al. (2020) made a deep learning-
based model for the identification of crop diseases and they
also stressed the need for well-categorized datasets;
moreover, they did a comparison of DL with ML techniques
and found that DL approach produces better accuracy in
classification, thus being more capable of the identification
of complex leaf diseases 1. Wang et al. (2020) used better
CNNs and data augmentation to make the model more
robust, and the technique they used is very important in our
method; their work was training six specifically-enriched-
CNN-models to find 26 diseases in 14 crops, and then they
picked the best one that gave accuracy and efficiency
balance for practical use €. Demilie (2024) undertook a
comparison of the deep learning models for crop disease
detection, and by the way, the accuracy of the model
selection and the CNNs’ superiority over the ML in
handling large datasets were also the points that were made;
for instance, the accuracies for certain crops such as rice
even reached 99.7% 4],

Mansoor et al. (2025) went another step ahead with the
monitoring systems by coming up with an 10T and Al-based
structure that not only connects smart sensors for real-time
data collection on soil, plant stress, and pests but also allows
for predictive analytics for disease outbreaks and supports
the use of region-specific interventions through ML
algorithms that are adaptable to the different regions . In
the same year, Singh et al. (2024) made a smart agriculture
drone system with the help of image processing and ML
techniques; they were able to identify the crops like
pineapple and papaya through the object detection done by
EfficientDetLitel, and they achieved 100% detection
success rate at the optimum altitudes while the targeted
spraying was made possible which minimized the use of
pesticides and improved the management of diseases [*2,
These innovations highlight the shift toward integrated,
automated systems that combine DL with hardware like
drones and sensors, improving robustness and scalability in
crop disease monitoring.

2.3 Region-Specific Challenges in Agricultural Al
Regional distinctives, like weather and soil types, are among
the major determinants of the occurrence and distribution of
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diseases 28, The research by Mansoor et al. (2025) is based
on the, 10T and Al, which are the main technologies of the
future, for the monitoring of the crop diseases in the specific
areas; it, however, stresses the analysis of sensor data for the
adaptability of handling such variables as humidity and
temperature that can actually predict the occurrence of
diseases in different climates [?. Borhani et al. (2022) came
up with a solution through the use of deep learning models
that are adjusted to the regional differences, and the
implementation of Vision Transformers (ViT) for the
purpose of automatic plant disease classification of datasets
such as Wheat Rust and Rice Leaf Disease, succeeding in
the attainment of very high accuracies, which are nearly as
good as those of CNNs while it offers faster prediction
speeds in hybrid models and, at the same time, solving the
problem of wide-ranging field conditions . Jung et al.
(2023) have been working on the creation of DL models that
exploit the regional aspects in certain cases, and they have
especially mentioned tomatoes grown in controlled
conditions. They have been able to reach an accuracy of
99.75% but they have also realized that the performance
drops considerably when operating on the images of lesions
taken from various regions, thus raising the need for
providing an ample supply of training data from diverse
sources 1. Also presenting a different scenario, Gulzar et al.
(2024) used deep learning to tell apart among alfalfa
varieties based on a custom leaf image dataset of 1,214
images and compared different models like ResNet and
EfficientNet achieving high accuracy in recognizing
different varieties under various environmental conditions,
that could be even applied as a screening of variety-specific
disease susceptibilities in regions like arid or temperate
zones 14,

The studies highlight the need for flexible Al systems that
can cater to different regions, for instance, through transfer
learning and data augmentation, which are methods for
capturing the distinct patterns of diseases induced by
climate in a particular place. For instance, the use of
hyperspectral imaging, which has been mentioned in wider
reviews [ might be able to increase the detection
capabilities in the humid tropics and dry lands, where
certain organisms might be made worse by the humidity. In
short, the ongoing creation of these datasets and models that
have geospatial metadata included in them for better
spreading across agricultural zones is the way to go when it
comes to tackling these challenges.

3. Dataset Description

3.1 Image Dataset Overview

The structure of the dataset facilitates efficient organization

and analysis of crop health conditions by regions. At the top

level, folders are allocated to various crops (Wheat, Paddy,

Potato, Cotton, Mustard, Kinnow) respectively. Under each

crop folder, there are three major sub-divisions - diseases,

insects, and nutrient deficiencies, which are consistently

named and described to support easy identification and

model training.

More particularly, the naming pattern adheres to the

following formats:

e Crop_Disease_(Name of the disease), for example,
Wheat_Disease_Rust, Paddy Disease_Blight

e Crop_Insect (Name of the insect), for instance,
Wheat_Insect_ Armyworm,
Paddy_Insect_BrownPlanthopper
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e Crop_Deficiency (Name of the deficiency), like,
Wheat_Deficiency Nitrogen,
Paddy_Deficiency Potassium

In turn, every subfolder takes in a number of .jpg images
that illustrate the related condition in natural field settings.
Thus, this structure not only maintains region-specific
labeling consistencies but also clearly distinguishes disease,
insect, and nutrient deficiency categories. Such an organized
hierarchy not only boosts model interpretability but also
enables the framework to recognize variations related to
different geographical and climatic regions.

In a similar way to our approach, Singh et al. (2024)
produced a dataset of 177 images for crop identification
(pineapple, papaya, and cabbage) using a smart agriculture
drone system, which supports evaluation standards for
targeted disease management across different areas 4. One
of the advantages of our dataset is the presence of geotagged
and condition-specific folders that aid in region-based
learning and enable the model to be more versatile in its
application to various agricultural areas.

3.2 Data Preprocessing and Augmentation

Training, the preprocessing of images includes resizing
them to 224x224 pixels and normalizing pixel intensity
values to a (0,1) scale thereby maintaining consistency
across samples. To further reduce the risk of overfitting, it is
decided random rotation (+£30°), horizontal and vertical
flipping, random zooming, and brightness adjustment will
all be done as ways of creating and maintaining a strong
dataset. The augmentations mimic different environmental
situations by changing lighting and angle; therefore, the
model can learn better to recognize the unseen field data.

4. Methodology

4.1 Deep Learning Classification Model

The experiment compared three deep learning models,
ResNet-50, VGG16, and EfficientNet-B0, for their ability to
tell apart crop health conditions: disease, insect attack, and
nutrient shortage. All models were first trained on ImageNet
and later adjusted using our region-specific agricultural
dataset. This study used transfer learning, as it has proven
useful for disease detection in areas with limited resources.
The models were trained with the Adam optimizer (learning
rate 0.001, batch size 32), using categorical cross-entropy as
the loss function. The best-performing model was chosen
based on accuracy, precision, recall, and F1-score.

4.2 Model Architecture

The selected model, ResNet-50, comprises 50 layers
interconnected  through residual (skip) connections,
effectively addressing the vanishing gradient issue in deep
networks. In comparison, VGG16 contains 16 convolutional
layers organized in a straightforward sequential structure,
while EfficientNet-BO employs compound scaling to
balance depth, width, and resolution efficiently.

The overall workflow of the system is represented in Figure
1, detailing the sequential stages of preprocessing,
augmentation, model training, and classification output.
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Fig 1: System workflow of the crop health classification
framework.

The workflow presents how the dataset is processed from
raw field images through preprocessing, augmentation, and
model training before generating the final classification
output. This structure ensures that every image passes
through consistent transformation and validation, allowing
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for accurate and region-specific classification results

4.3 Training Process

The dataset was divided into 80% training and 20% testing
subsets, ensuring a balanced representation of each crop and
condition. The models were trained for 50 epochs, with
early stopping applied based on validation loss to prevent
overfitting.

4.4 Evaluation Metrics

Model performance was evaluated using standard
classification metrics: accuracy, precision, recall, and F1-
score, computed for each class. These metrics ensure a
robust evaluation framework capable of assessing the
model’s effectiveness across diverse real-world field
conditions.

5. Experiments and Results

5.1 Experimental Setup

The dataset comprised 10,000 images across SiX Crops:
Wheat, Paddy, Potato, Cotton, Mustard and Kinnow, each
categorized into diseases, insects, and nutrient deficiencies,
divided into 80% training and 20% testing sets. Region-
specific data was incorporated by tagging images with
metadata on climate zones (tropical, temperate, arid).
Training was performed for 50 epochs, with a validation
split of 20% from the training set to monitor overfitting.

5.2 Classification Performance

The comparison of the three models showed that ResNet-50
performed best, reaching an overall accuracy of 95.2%,
precision of 94.8%, recall of 95.0%, and F1-score of 94.9%.
VGG16 scored 92.1% accuracy, while EfficientNet-BO
reached 93.5%. Confusion matrices showed few mistakes
between diseases and deficiencies, with insect cases being
classified most accurately (97%). Table 1 compares their
results.

Table 1: Classification Comparison Of Different Models

Model Accuracy (%0)|Precision (%)|Recall (%6)|F1-Score (%)
ResNet-50 95.2 94.8 95.0 94.9
VGG16 92.1 91.8 92.0 91.9
EfficientNet-B0 935 93.2 934 93.3

Figure 2 gives a visual comparison, showing that ResNet-50
stayed ahead across all measures, proving it to be a strong
choice for region-based crop health classification.

100
EEm Accuracy
B Precision
mm Recall
98+ mmm Fl-Score
g 96
()
o
S
&
]
£
)
a
ResNet-50 VGG16 EfficientNet-BO

Fig 2: Model Performance Comparison
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These results surpass benchmarks from similar studies 4,
demonstrating the effectiveness of the selected model.

5.3 Region-Specific Disease Monitoring Insights

When stratified by regions, the model showed varying
performance: 96.5% accuracy in tropical zones due to
higher disease prevalence in the dataset, compared to 93.8%
in arid regions where nutrient deficiencies were more
common. Insights revealed that environmental factors like
humidity influenced model predictions, with augmented
data from specific regions improving generalization by 5-
7%.

5.4 Application Usability and Performance

The framework was applied as a web-based application for
monitoring, achieving inference times of under 0.5 seconds
per image on standard hardware. Usability testing with 20
farmers indicated high satisfaction (4.5/5 rating).

6. Discussion

6.1 Implications for Precision Agriculture

The proposed deep learning framework significantly
contributes to precision agriculture by enabling early,
region-specific  detection of crop diseases, insect
infestations, and nutrient deficiencies. By using ResNet-50’s
high classification accuracy (95.2%) and region-based data
organization, the system allows for timely and targeted
interventions, potentially reducing yield losses by 2030%.
Integration with loT-based field sensors and satellite-driven
vegetation indices can further enhance the real-time
monitoring and automation capabilities of this framework.

6.2 Limitations and Challenges

Despite its strong performance, the framework faces several
limitations. Model accuracy depends heavily on the quality
and diversity of field images, and imbalances in the dataset,
particularly for crops like Kinnow and Cotton may
introduce minor classification bias. Additionally, challenges
persist in low-resource agricultural regions, where limited
internet access and computational infrastructure restrict
large-scale use. Lighting variations, overlapping symptoms
between nutrient deficiencies and early-stage diseases, and
region-specific environmental differences may also slightly
affect generalization. Addressing these challenges will
require broader data collection under diverse agro-climatic
conditions and continuous retraining using updated regional
datasets.

6.3 Scalability and Region-Specific Adaptability

The framework demonstrates strong scalability and
adaptability through its transfer learning-based design,
which allows retraining with minimal new data for different
regions or crop varieties. In future implementations,
integrating federated learning could enable privacy-
preserving regional updates, where models are trained
locally and aggregated globally without transferring raw
data. Such an approach would make the system more robust,
regionally relevant, and suitable for large-scale agricultural
use.

7. Conclusion and Future Work
7.1 Summary of Findings
This study presented a region-specific deep learning
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framework for crop health monitoring, capable of
classifying diseases, insect infestations, and nutrient
deficiencies across six major crops: Wheat, Paddy, Potato,
Cotton, Mustard and Kinnow. The structured dataset,
containing 26 well-defined classes, enabled comprehensive
model training using transfer learning techniques. Among
the evaluated architectures, ResNet-50 achieved the best
performance (95.2% accuracy), outperforming VGG16 and
EfficientNet-B0, while demonstrating strong region-specific
generalization. These results highlight the framework’s
potential to serve as a scalable Al solution for real-time
precision agriculture applications.

7.2 Future Research Directions

Future research will focus on:

e Expanding the dataset to include more crop varieties,
growth stages, and regional diversity to improve model
robustness.

e Developing lightweight models for edge computing and
mobile deployment, enabling offline use in remote
areas.

e Exploring federated and continual learning approaches
to facilitate dynamic, privacy-preserving model updates
across multiple agricultural zones.
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