
~ 164 ~

International Journal of Computing and Artificial Intelligence 2025; 6(2): 164-168

E-ISSN: 2707-658X

P-ISSN: 2707-6571

Impact Factor (RJIF): 5.57

www.computersciencejournals.

com/ijcai

IJCAI 2025; 6(2): 164-168

Received: 01-06-2025

Accepted: 06-07-2025

Drogunova Yulia

Bachelor’s Degree, Dostoevsky

Omsk State University, Omsk,

Russian Federation

Corresponding Author:

Drogunova Yulia

Bachelor’s Degree, Dostoevsky

Omsk State University, Omsk,

Russian Federation

Economic assessment of the impact of QA automation

in a GitLab-based DevOps environment on the

development and maintenance lifecycle of mobile

applications

Drogunova Yulia

DOI: https://doi.org/10.33545/27076571.2025.v6.i2c.195

Abstract
This article examines the economic impact of quality assurance automation within a GitLab-based

DevOps environment on the development and maintenance of mobile applications. It analyzes the

structure of CI/CD pipelines, including the use of containerization, parallel testing, static code analysis,

and dependency caching. Emphasis is placed on the reduction of total cost of ownership, increase in

return on investment, and savings in labor expressed in full-time equivalents. Based on case studies of

Airbus and Ally Financial, the implementation of automated testing processes is shown to significantly

accelerate release cycles and reduce costs associated with testing and maintenance. The study

concludes that integrating such solutions is strategically important for improving the predictability and

efficiency of mobile development processes.

Keywords: DevOps, test automation, GitLab, CI/CD, mobile applications, economic efficiency,

development lifecycle

Introduction

In the context of rapid innovation in mobile technologies and intense competition for the

market of mobile applications, companies are increasingly being pressed to hasten the

release of high-quality mobile applications. The DevOps approach, which facilitates

continuous delivery and integration (CI/CD), has emerged as a central component of the

modern IT production pipeline. Quality assurance (QA), however, is perhaps the most labor-

intensive and error-prone phase of development. Use of automated testing on CI/CD

pipelines-particularly by means of the GitLab toolset-significantly reduces release time,

operational costs, and the likelihood of production defects, enhancing system stability and

lowering support costs.

The aim of this study is to provide an economic assessment of the efficiency of QA

automation in the GitLab environment for the development and maintenance of mobile

applications.

Main part. Automated testing infrastructure in GitLab CI/CD for mobile applications

A modern DevOps infrastructure for mobile development requires tight integration of testing

tools with CI/CD pipelines. GitLab provides a flexible and scalable framework for building

such pipelines, allowing for stage configuration, parallel task execution, use of both self-

hosted and cloud-based runners, and automated dependency management. According to

GitLab reports, as of 2025, the platform is used by over 50 million registered users and more

than 50% of Fortune 100 companies.

A typical CI/CD pipeline for mobile projects in GitLab consists of logically separated stages,

each corresponding to a specific phase in the application lifecycle-from build to deployment-

with integrated quality control and automated testing (fig. 1).

https://www.computersciencejournals.com/ijcai
https://www.computersciencejournals.com/ijcai
https://doi.org/10.33545/27076571.2025.v6.i2c.195

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 165 ~

Fig 1: Stages of a typical CI/CD pipeline

Each stage constitutes a separate job within the CI/CD

pipeline and is closely linked to a specific set of tools,

configurations, and technological solutions. Stability and

scalability of the infrastructure are ensured through the use

of containerization, parallel runners, caching mechanisms,

and integrated static code analysis (table 1).

Table 1: CI/CD pipeline components, tools, and example commands for Android and iOS [1]

Stage/component Tools & technologies Example commands (Android) Example commands (iOS)

Build
Gradle, Xcode, CocoaPods, Swift

Package Manager.
./gradlew assembleDebug

xcodebuild-scheme MyApp-configuration

Debug

Testing
JUnit, Espresso, XCTest, XCUITest,

Appium, Firebase Test Lab, Bitrise.

./gradlew test

./gradlew connectedAndroidTest

xcodebuild test-scheme MyApp-destination

'platform=iOS Simulator,name=iPhone 14'

Static analysis (lint/scan) ktlint, detekt, SwiftLint, SonarQube.
./gradlew ktlintCheck

Detect

Swiftlint

sonar-scanner

Publishing/deployment

Firebase App Distribution, GitLab

Pages, TestFlight, Google Play

Console.

./gradlew publishBundle
xcrun altool--upload-app

fastlane deliver

Containerization Docker, Podman, GitLab Runners. image: gradle:8.0-jdk17 image: macos-xcode

Scalability
GitLab parallel jobs, test sharding,

cloud runners.
parallel: 4 parallel: 3

Caching Gradle cache, CocoaPods cache.

cache:\n key: gradle\n paths:\n-

.gradle/wrapper/\n-

.gradle/caches/

cache:\n key: cocoapods\n paths:\n-Pods/\n-

~/Library/Caches/CocoaPods/

In addition to the stages described above, smooth pipeline

operation also requires a stable execution environment and

infrastructure-level automation. To ensure consistency and

reproducibility of all pipeline stages, containerization

technologies such as Docker or Podman are used. GitLab

Runners can be deployed using both containerized and bare-

metal virtual machine deployment, depending on the

specific needs of the project [2]. For overall performance

optimization, dependency and artifact caching mechanisms

are utilized (e.g., Gradle cache, CocoaPods cache) that

avoid duplicate downloads of libraries and significantly

accelerate CI execution.

Key characteristics of an effective testing infrastructure

include parallelization and scalability. In GitLab, automated

test execution can be organized with support for parallel

processing and dynamic task scaling. Features such as test

sharding and parallel execution across multiple runners

reduce overall pipeline execution time significantly. This is

particularly beneficial for large-scale UI testing, where a

single test suite may be run in parallel on multiple emulators

or real devices, including distributed cloud setups.

In addition to dynamic testing, static code analysis is also

included in the pipeline to enable early defect and

vulnerability detection. Apart from internal linters (for

example, detekt for Kotlin, SwiftLint for Swift), SonarQube

is utilized to complement quality metrics such as test

coverage, technical debt, cyclomatic complexity, and so

forth. Such checks prevent code integration that does not

meet predefined quality standards, thereby maintaining a

high level of code integrity throughout the entire

development process.

Thus, the automated testing infrastructure of GitLab CI/CD

is a scalable and modular one, which is a part of the whole

delivery pipeline of the mobile application. It offers high

QA automation rates, facilitates process transparency, raises

predictability of releases, and reduces the operational costs

by minimizing the number of defects that reach production.

Economic impact of QA automation

The implementation of automated testing within the CI/CD

pipeline for mobile development using the GitLab platform

has a direct impact on key economic indicators of a project.

These include a reduction in Total Cost of Ownership

(TCO), an increase in Return on Investment (ROI), and the

optimization of personnel costs expressed in terms of Full-

Time Equivalent (FTE)-table 2.

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 166 ~

Table 2: Economic efficiency metrics for QA automation [3, 4]

Metric Definition/interpretation Calculation formula Application in QA automation

TCO
Total cost of implementing, operating, and

maintaining automated testing infrastructure.
TCO = CAPEX + OPEX.

Includes setup costs, infrastructure, licensing,

test maintenance, and team training.

ROI
Ratio of financial gain from automation to

the cost of investment.

ROI = (automation benefits-

implementation

costs)/implementation costs × 100%.

Evaluates the profitability of automation; a

positive ROI indicates that investment is

justified.

FTE
Full-time equivalent hours saved due to

automation.

FTE = saved man-hours/average

monthly load per specialist.

Measures how much QA capacity is freed up

for reallocation to higher-value activities.

The above statistics provide a quantitative basis on which

ROI in QA automation in the context of mobile DevOps can

be evaluated. However, a comprehensive evaluation

requires consideration of not only economic indicators but

also qualitative differences between automated and manual

processes also need to be considered.

Manual testing is traditionally viewed as a loose and

undefined practice, particularly at the start of development

or when testing non-compliant user cases. However, once a

project expands and the frequency of releases increases, this

type of method turns out to be resource-intensive and more

challenging to anticipate. Test automation-especially if part

of a GitLab CI/CD pipeline-delivers greater stability, speed,

and reproducibility in QA cycles. A comparative overview

of the two approaches across several critical parameters is

presented below (table 3).

Table 3: Manual vs automated testing in CI/CD [5, 6]

Criterion Manual testing Automated testing (GitLab CI/CD)

Test coverage Limited by time and QA team size.
Can reach 80-90% code coverage, depending on test strategy and type (unit,

integration, UI).

Reproducibility Human-dependent, may vary. Fully reproducible in isolated environments (e.g., containers, runners).

Regression testing time
Typically 1-3 days, depending on

scope and manual capacity

30-90 minutes with parallel execution, depending on infrastructure and number

of test suites.

Human error risk High-manual input, missed steps. Minimized through standardized and repeatable test scenarios.

Team workload High and repetitive. Reduced via automated test runs on each commit or merge event.

Initial setup cost Low. Requires upfront investment in tooling, infrastructure, and test development.

Long-term maintenance

cost
Grows with number of releases. Varies depending on test complexity; may decrease with reusable test suites.

Release cycle speed Slower due to manual checks. Faster-supports daily or multiple daily releases in mature CI/CD environments.

Code change response Slower adaptation
Immediate feedback via CI-triggered test execution (e.g., via GitLab

pipelines).

It should be remembered that the characteristics depicted in

the table are wide trends generalized from the behavior of

experienced DevOps teams and studies. Actual performance

metrics-such as test run duration, extent of coverage, or

support cost-may vary depending on project size, system

architecture, degree of automation, and tools employed. But

the distinctions outlined above are a benchmark against

which to compare the two approaches and evaluate the

probable impact of test automation within a CI/CD system.

Overall, the presented facts confirm that the implementation

of automated testing in mobile development CI/CD

pipelines makes sense both from a technical and an

economic aspect. Provided that the pipelines are fine-tuned

and resource consumption is optimally controlled,

automation can actually reduce the overall cost, enhance

ROI, and free up human resources for more critical tasks.

These advantages position automated testing as a

sustainable and strategically sound solution for

organizations focused on frequent releases, product quality,

and operational efficiency.

Assessment of the impact of QA automation on the cost

of the mobile application lifecycle

Test automation has a multifaceted impact on the cost

structure throughout the entire lifecycle of a mobile

application. The integration of automated checks into a

GitLab-based DevOps infrastructure contributes to the

reduction of both direct operational expenses and indirect

costs associated with rework, bug fixes, and ongoing

support. The resulting economic benefits manifest across

development, release, maintenance, and update phases of

the product lifecycle (table 4).

Table 4: Economic impact of QA automation across the mobile application lifecycle

Lifecycle stage Impact of automation Economic effect

Development
Elimination of repetitive tasks (e.g., regression and acceptance

testing); redistribution of team roles; fewer rework cycles.

Reduction in manual workload for developers and QA

engineers; potentially shorter development cycles.

Release
Improved predictability of releases; automated stabilization

checks enhance release consistency.

Lower coordination overhead and increased deployment

frequency in CI/CD environments.

Maintenance
Earlier detection of defects reduces the volume of incidents and

support tickets.

Decreased post-release support costs; reduction in time and

resources required for bug fixing in production stages.

A notable example of the successful use of GitLab CI/CD to

accelerate software delivery is the case of Airbus

Intelligence, where automation of development and testing

processes led to a significant improvement in operational

efficiency [7]. Operating in a distributed team environment

with a previously fragmented toolchain, GitLab became a

unified solution that consolidated deployment scripting,

automated testing, and security controls within a single

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 167 ~

pipeline. As a result, manual steps for environment setup

and testing were eliminated, reducing the release time for a

single application from 24 hours to 10 minutes. Currently,

98% of releases are delivered on time, with the remaining

ones delayed by no more than a few hours-an outcome that

was previously unattainable. The company now runs 17

applications managed through GitLab, and over five years,

the speed of feature delivery has increased by a factor of

144, underscoring the strategic impact of integrating test

automation and CI/CD practices into the production cycle.

Another indicator of the effectiveness of GitLab CI/CD

implementation is the experience of Ally Financial Inc., the

largest digital bank in the United States [8]. In a fully online

service environment, the timeliness, stability, and security

of releases are critical for maintaining and expanding the

customer base. Prior to adopting GitLab, each update was

accompanied by significant downtime, with developers

losing up to 100 hours per month collectively-directly

contributing to deployment failures and slower time-to-

market. The transition to the GitLab DevSecOps platform

enabled centralized pipeline management, reduced the

number of tools used, and automated key stages of testing

and deployment.

The economic benefits became evident within the first year

of transformation. According to internal reports, the

company had saved $300,000 a year by reducing downtime

and confining third-party support solution expenses. The

number of critical failures in the delivery pipeline reduced

from 20 to 2 annually, while average deployment time was

reduced by 50%. These improvements directly contributed

to lowering the TCO of the DevOps infrastructure and

increasing ROI by supporting more stable and predictable

releases, thus allowing for faster delivery of new features

while making it very reliable.

As part of the «Total Economic Impact™ of GitLab

Ultimate» research study that Forrester Consulting

conducted on behalf of GitLab, the effect of implementing

the DevSecOps platform was analyzed in four organizations

from diverse industries-financial services, defense, scientific

research, and technology [9]. Based on interviews with these

organizations, Forrester modeled a composite organization

with $5 billion in annual revenue, 5,000 employees (40% in

software development), and 50% of revenue derived from

IT products. The objective of this composite organization

was to increase team productivity, reduce operational costs,

and ensure compliance with industry regulations by

consolidating fragmented toolchains into a single platform-

GitLab Ultimate-integrating automated testing, security, and

continuous delivery within the CI/CD process. A summary

of the aggregated economic outcomes of GitLab Ultimate

adoption in this composite organization is presented in fig.2.

Fig 2: Key indicators of cost and labor reduction following the implementation of GitLab Ultimate (based on Forrester TEI data)

In addition, according to Forrester’s findings, developers in

the composite organization save an average of up to 305

hours per year thanks to test automation, enabling more

frequent validations, faster issue detection and resolution,

and reduced tool-switching overhead. The platform also

contributes to accelerating new employee onboarding: time

to full productivity is reduced fourfold, from 1,5 months to

1,5 weeks. There was also significant benefit in

vulnerability management: due to scanning and security

embedded, time spent on security tasks was decreased five-

fold, and both the mean time to respond to events and the

likelihood of vulnerabilities reaching production were

significantly reduced. Furthermore, GitLab enables 15-times

quicker initial product delivery through synchronized

project launches, more frequent releases, and the

introduction of security practices into all stages of the

software development life cycle.

Therefore, test automation in the GitLab CI/CD pipeline

demonstrates consistent cost reduction across all the critical

phases of the mobile application life cycle. By optimizing

the use of labor, reducing release cycles to a minimum,

reducing incidents and failures, and minimizing

maintenance expenses, organizations can significantly

enhance operational efficiency without compromising

product reliability and quality. Real-world implementations

show that the impact of automation extends beyond

technical improvement, revolutionizing the economics of

software delivery through scalability, reusability, and the

integration of security into every layer of the production

environment.

Conclusion

The integration of automated testing into GitLab CI/CD

pipelines has a substantial impact on the economics of

mobile application development and maintenance. A

GitLab-based infrastructure ensures a high degree of

integration between testing tools, quality control

mechanisms, containerization technologies, and scalable

execution environments. This enables a stable and

reproducible software delivery process, contributing to a

reduction in TCO, an increase in ROI, and the reallocation

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 168 ~

of human resources in terms of FTE, particularly in

environments with frequent releases and distributed teams.

Automation delivers measurable benefits at all stages of the

application lifecycle-from development to post-release

support-including faster release cycles, fewer production

defects, and reduced manual testing workloads. The

empirical case studies presented demonstrate not only

accelerated delivery times but also significant reductions in

operational costs and downtime. Therefore, the systematic

integration of QA automation into GitLab-based DevOps

workflows can be regarded as a strategic enabler for

improving the efficiency of mobile development and

optimizing the economic performance of digital projects.

References
1. Ruiz ZC, Juan G. The role of DevOps in mobile

application development: CI/CD pipelines for faster

releases. Information Horizons: American Journal of

Library and Information Science Innovation.

2023;1(2):4-12.

2. Koneru NMK. The role of GitLab Runners in CI/CD

pipelines: configuring EC2, Docker, and Kubernetes

build environments. The Eastasouth Journal of

Information System and Computer Science.

2025;2(3):246-271. doi:10.58812/esiscs.v2i03.529

3. Srinivas N, Mandaloju N, Nadimpalli SV. Leveraging

automation in software quality assurance: enhancing

efficiency and reducing defects. The Metascience.

2024;2(4):84-95.

4. Garifullin R. Optimization of frontend application

performance: modern techniques and tools. Professional

Bulletin. Information Technology and Security.

2025;3:10-14.

5. Baitha S, Soorya V, Kothari O, Rajagopal SM, Panda

N. Streamlining software development: a

comprehensive study on CI/CD automation. In: 2024

4th International Conference on Sustainable Expert

Systems (ICSES). IEEE; 2024. p. 1299-1305.

doi:10.1109/ICSES63445.2024.10763207

6. Nuzhdin D. Performance and fault tolerance of iOS

applications: optimization strategies at the architectural

and UI thread levels. Cold Science. 2025;19:29-40.

EDN: HFYXYR.

7. Airbus takes flight with GitLab, releasing features 144×

faster. GitLab [Internet]. [cited 2025 Sep 24]. Available

from: https://about.gitlab.com/customers/airbus/

8. Ally Financial cuts pipeline outages and eases security

scanning with GitLab. GitLab [Internet]. [cited 2025

Sep 25]. Available from:

https://about.gitlab.com/customers/ally/

9. GitLab Ultimate’s total economic impact: 483% ROI

over 3 years. GitLab [Internet]. [cited 2025 Sep 27].

Available from: https://about.gitlab.com/blog/gitlab-

ultimates-total-economic-impact-483-roi-over-3-years/

https://www.computersciencejournals.com/ijcai

