International Journal of Computing and Artificial Intelligence 2025; 6(2): 164-168

International Journal of

Computing and Artificial Intelligence

E-ISSN: 2707-658X
P-ISSN: 2707-6571
Impact Factor (RJIF): 5.57

www.computersciencejournals.

com/ijcai

IJCAI 2025; 6(2): 164-168
Received: 01-06-2025
Accepted: 06-07-2025

Drogunova Yulia

Bachelor’s Degree, Dostoevsky
Omsk State University, Omsk,
Russian Federation

Corresponding Author:
Drogunova Yulia

Bachelor’s Degree, Dostoevsky
Omsk State University, Omsk,
Russian Federation

Economic assessment of the impact of QA automation
in a GitLab-based DevOps environment on the
development and maintenance lifecycle of mobile
applications

Drogunova Yulia

DOI: https://doi.org/10.33545/27076571.2025.v6.i2¢.195

Abstract

This article examines the economic impact of quality assurance automation within a GitLab-based
DevOps environment on the development and maintenance of mobile applications. It analyzes the
structure of CI/CD pipelines, including the use of containerization, parallel testing, static code analysis,
and dependency caching. Emphasis is placed on the reduction of total cost of ownership, increase in
return on investment, and savings in labor expressed in full-time equivalents. Based on case studies of
Airbus and Ally Financial, the implementation of automated testing processes is shown to significantly
accelerate release cycles and reduce costs associated with testing and maintenance. The study
concludes that integrating such solutions is strategically important for improving the predictability and
efficiency of mobile development processes.

Keywords: DevOps, test automation, GitLab, CI/CD, mobile applications, economic efficiency,
development lifecycle

Introduction

In the context of rapid innovation in mobile technologies and intense competition for the
market of mobile applications, companies are increasingly being pressed to hasten the
release of high-quality mobile applications. The DevOps approach, which facilitates
continuous delivery and integration (CI/CD), has emerged as a central component of the
modern IT production pipeline. Quality assurance (QA), however, is perhaps the most labor-
intensive and error-prone phase of development. Use of automated testing on CI/CD
pipelines-particularly by means of the GitLab toolset-significantly reduces release time,
operational costs, and the likelihood of production defects, enhancing system stability and
lowering support costs.

The aim of this study is to provide an economic assessment of the efficiency of QA
automation in the GitLab environment for the development and maintenance of mobile
applications.

Main part. Automated testing infrastructure in GitLab CI1/CD for mobile applications
A modern DevOps infrastructure for mobile development requires tight integration of testing
tools with CI/CD pipelines. GitLab provides a flexible and scalable framework for building
such pipelines, allowing for stage configuration, parallel task execution, use of both self-
hosted and cloud-based runners, and automated dependency management. According to
GitLab reports, as of 2025, the platform is used by over 50 million registered users and more
than 50% of Fortune 100 companies.

A typical CI/CD pipeline for mobile projects in GitLab consists of logically separated stages,
each corresponding to a specific phase in the application lifecycle-from build to deployment-
with integrated quality control and automated testing (fig. 1).

~164 ~

https://www.computersciencejournals.com/ijcai
https://www.computersciencejournals.com/ijcai
https://doi.org/10.33545/27076571.2025.v6.i2c.195

International Journal of Computing and Atrtificial Intelligence

https://www.computersciencejournals.com/ijcai

Build

Test

Lint/Scan

7

Package/Deploy

Fig 1: Stages of a typical CI/CD pipeline

Each stage constitutes a separate job within the CI/CD
pipeline and is closely linked to a specific set of tools,
configurations, and technological solutions. Stability and

scalability of the infrastructure are ensured through the use
of containerization, parallel runners, caching mechanisms,
and integrated static code analysis (table 1).

Table 1: CI/CD pipeline components, tools, and example commands for Android and iOS 1

Stage/component Tools & technologies Example commands (Android) Example commands (i0S)
. Gradle, Xcode, CocoaPods, Swift xcodebuild-scheme MyApp-configuration
Build Jgradlew assembleDebug
Package Manager. Debug
Testin JUnit, Espresso, XCTest, XCUITest, Jgradlew test xcodebuild test-scheme MyApp-destination
9 Appium, Firebase Test Lab, Bitrise. |./gradlew connectedAndroidTest| 'platform=iOS Simulator,name=iPhone 14'
Static analysis (lint/scan)|ktlint, detekt, SwiftLint, SonarQube. ./gradle\E)v ktlintCheck Swiftlint
etect sonar-scanner

Firebase App Distribution, GitLab

xcrun altool--upload-app

Publishing/deployment | Pages, Testg:)lggé,lfoogle Play gradlew publishBundle fastlane deliver
Containerization Docker, Podman, GitLab Runners. image: gradle:8.0-jdk17 image: macos-xcode
Scalability Gitlab parallel jobs, test sharding, parallel: 4 parallel: 3

cloud runners.

Caching Gradle cache, CocoaPods cache.

cache:\n key: gradle\n paths:\n-

cache:\n key: cocoapods\n paths:\n-Pods/\n-

-gradle/wrapper/n- ~[Library/Caches/CocoaPods/

.gradle/caches/

In addition to the stages described above, smooth pipeline
operation also requires a stable execution environment and
infrastructure-level automation. To ensure consistency and
reproducibility of all pipeline stages, containerization
technologies such as Docker or Podman are used. GitLab
Runners can be deployed using both containerized and bare-
metal virtual machine deployment, depending on the
specific needs of the project 2. For overall performance
optimization, dependency and artifact caching mechanisms
are utilized (e.g., Gradle cache, CocoaPods cache) that
avoid duplicate downloads of libraries and significantly
accelerate Cl execution.

Key characteristics of an effective testing infrastructure
include parallelization and scalability. In GitLab, automated
test execution can be organized with support for parallel
processing and dynamic task scaling. Features such as test
sharding and parallel execution across multiple runners
reduce overall pipeline execution time significantly. This is
particularly beneficial for large-scale Ul testing, where a
single test suite may be run in parallel on multiple emulators
or real devices, including distributed cloud setups.

In addition to dynamic testing, static code analysis is also
included in the pipeline to enable early defect and

vulnerability detection. Apart from internal linters (for
example, detekt for Kotlin, SwiftLint for Swift), SonarQube
is utilized to complement quality metrics such as test
coverage, technical debt, cyclomatic complexity, and so
forth. Such checks prevent code integration that does not
meet predefined quality standards, thereby maintaining a
high level of code integrity throughout the entire
development process.

Thus, the automated testing infrastructure of GitLab CI/CD
is a scalable and modular one, which is a part of the whole
delivery pipeline of the mobile application. It offers high
QA automation rates, facilitates process transparency, raises
predictability of releases, and reduces the operational costs
by minimizing the number of defects that reach production.

Economic impact of QA automation

The implementation of automated testing within the CI/CD
pipeline for mobile development using the GitLab platform
has a direct impact on key economic indicators of a project.
These include a reduction in Total Cost of Ownership
(TCO), an increase in Return on Investment (ROI), and the
optimization of personnel costs expressed in terms of Full-
Time Equivalent (FTE)-table 2.

~ 165~

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Atrtificial Intelligence

https://www.computersciencejournals.com/ijcai

Table 2: Economic efficiency metrics for QA automation [4

automation.

monthly load per specialist.

Metric Definition/interpretation Calculation formula Application in QA automation
TCO Tc_)tal cost of |mplement|n_g, operating, and TCO = CAPEX + OPEX. Includes setup costs, mfrastructure,_Il_censmg,
maintaining automated testing infrastructure. test maintenance, and team training.
. ROI = (automation benefits- Evaluates the profitability of automation; a
Ratio of financial gain from automation to . - p A . .
ROI the cost of investment implementation positive ROl indicates that investment is
' costs)/implementation costs x 100%. justified.
FTE Full-time equivalent hours saved due to FTE = saved man-hours/average | Measures how much QA capacity is freed up

for reallocation to higher-value activities.

The above statistics provide a quantitative basis on which
ROI in QA automation in the context of mobile DevOps can
be evaluated. However, a comprehensive evaluation
requires consideration of not only economic indicators but
also qualitative differences between automated and manual
processes also need to be considered.

Manual testing is traditionally viewed as a loose and
undefined practice, particularly at the start of development

or when testing non-compliant user cases. However, once a
project expands and the frequency of releases increases, this
type of method turns out to be resource-intensive and more
challenging to anticipate. Test automation-especially if part
of a GitLab CI/CD pipeline-delivers greater stability, speed,
and reproducibility in QA cycles. A comparative overview
of the two approaches across several critical parameters is

presented below (table 3).

Table 3: Manual vs automated testing in CI/CD 58

Criterion Manual testing

Automated testing (GitLab CI/CD)

Test coverage Limited by time and QA team size.

Can reach 80-90% code coverage, depending on test strategy and type (unit,

integration, Ul).

Reproducibility Human-dependent, may vary.

Fully reproducible in isolated environments (e.g., containers, runners).

Typically 1-3 days, depending on

Regression testing time .
scope and manual capacity

30-90 minutes with parallel execution, depending on infrastructure and number

of test suites.

Human error risk High-manual input, missed steps.

Minimized through standardized and repeatable test scenarios.

Team workload High and repetitive.

Reduced via automated test runs on each commit or merge event.

Initial setup cost Low.

Requires upfront investment in tooling, infrastructure, and test development.

Long-term maintenance

Grows with number of releases.
cost

Varies depending on test complexity; may decrease with reusable test suites.

Release cycle speed Slower due to manual checks.

Faster-supports daily or multiple daily releases in mature CI/CD environments.

Code change response Slower adaptation

Immediate feedback via Cl-triggered test execution (e.g., via GitLab

pipelines).
It should be remembered that the characteristics depicted in These advantages position automated testing as a
the table are wide trends generalized from the behavior of sustainable and strategically sound solution for

experienced DevOps teams and studies. Actual performance
metrics-such as test run duration, extent of coverage, or
support cost-may vary depending on project size, system
architecture, degree of automation, and tools employed. But
the distinctions outlined above are a benchmark against
which to compare the two approaches and evaluate the
probable impact of test automation within a CI/CD system.

Overall, the presented facts confirm that the implementation
of automated testing in mobile development CI/CD
pipelines makes sense both from a technical and an
economic aspect. Provided that the pipelines are fine-tuned
and resource consumption is optimally controlled,
automation can actually reduce the overall cost, enhance
ROI, and free up human resources for more critical tasks.

organizations focused on frequent releases, product quality,

and operational efficiency.

Assessment of the impact of QA automation on the cost

of the mobile application lifecycle

Test automation has a multifaceted impact on the cost
structure throughout the entire lifecycle of a mobile
application. The integration of automated checks into a
GitLab-based DevOps infrastructure contributes to the
reduction of both direct operational expenses and indirect
costs associated with rework, bug fixes, and ongoing
support. The resulting economic benefits manifest across
development, release, maintenance, and update phases of

the product lifecycle (table 4).

Table 4: Economic impact of QA automation across the mobile application lifecycle

Lifecycle stage Impact of automation

Economic effect

Development

Elimination of repetitive tasks (e.g., regression and acceptance
testing); redistribution of team roles; fewer rework cycles.

engineers; potentially shorter development cycles.

Reduction in manual workload for developers and QA

Release i
checks enhance release consistency.

Improved predictability of releases; automated stabilization

frequency in CI/CD environments.

Lower coordination overhead and increased deployment

Maintenance

support tickets.

Earlier detection of defects reduces the volume of incidents and

Decreased post-release support costs; reduction in time and
resources required for bug fixing in production stages.

A notable example of the successful use of GitLab CI/CD to
accelerate software delivery is the case of Airbus
Intelligence, where automation of development and testing
processes led to a significant improvement in operational

efficiency 1. Operating in a distributed team environment
with a previously fragmented toolchain, GitLab became a
unified solution that consolidated deployment scripting,
automated testing, and security controls within a single

~ 166 ~

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Atrtificial Intelligence

pipeline. As a result, manual steps for environment setup
and testing were eliminated, reducing the release time for a
single application from 24 hours to 10 minutes. Currently,
98% of releases are delivered on time, with the remaining
ones delayed by no more than a few hours-an outcome that
was previously unattainable. The company now runs 17
applications managed through GitLab, and over five years,
the speed of feature delivery has increased by a factor of
144, underscoring the strategic impact of integrating test
automation and CI/CD practices into the production cycle.
Another indicator of the effectiveness of GitLab CI/CD
implementation is the experience of Ally Financial Inc., the
largest digital bank in the United States €1, In a fully online
service environment, the timeliness, stability, and security
of releases are critical for maintaining and expanding the
customer base. Prior to adopting GitLab, each update was
accompanied by significant downtime, with developers
losing up to 100 hours per month collectively-directly
contributing to deployment failures and slower time-to-
market. The transition to the GitLab DevSecOps platform
enabled centralized pipeline management, reduced the
number of tools used, and automated key stages of testing
and deployment.

The economic benefits became evident within the first year
of transformation. According to internal reports, the
company had saved $300,000 a year by reducing downtime

https://www.computersciencejournals.com/ijcai

and confining third-party support solution expenses. The
number of critical failures in the delivery pipeline reduced
from 20 to 2 annually, while average deployment time was
reduced by 50%. These improvements directly contributed
to lowering the TCO of the DevOps infrastructure and
increasing ROI by supporting more stable and predictable
releases, thus allowing for faster delivery of new features
while making it very reliable.

As part of the «Total Economic Impact™ of GitLab
Ultimate» research study that Forrester Consulting
conducted on behalf of GitLab, the effect of implementing
the DevSecOps platform was analyzed in four organizations
from diverse industries-financial services, defense, scientific
research, and technology 1. Based on interviews with these
organizations, Forrester modeled a composite organization
with $5 billion in annual revenue, 5,000 employees (40% in
software development), and 50% of revenue derived from
IT products. The objective of this composite organization
was to increase team productivity, reduce operational costs,
and ensure compliance with industry regulations by
consolidating fragmented toolchains into a single platform-
GitLab Ultimate-integrating automated testing, security, and
continuous delivery within the CI/CD process. A summary
of the aggregated economic outcomes of GitLab Ultimate
adoption in this composite organization is presented in fig.2.

Reduction in time spent
on toolchain administration

Reduction in effort spent
on security assurance

Reduction in costs for
software licensing tools

Reduction in time to onboard
new software developers

75%

81%

25%

75%

Fig 2: Key indicators of cost and labor reduction following the implementation of GitLab Ultimate (based on Forrester TEI data)

In addition, according to Forrester’s findings, developers in
the composite organization save an average of up to 305
hours per year thanks to test automation, enabling more
frequent validations, faster issue detection and resolution,
and reduced tool-switching overhead. The platform also
contributes to accelerating new employee onboarding: time
to full productivity is reduced fourfold, from 1,5 months to
1,5 weeks. There was also significant benefit in
vulnerability management: due to scanning and security
embedded, time spent on security tasks was decreased five-
fold, and both the mean time to respond to events and the
likelihood of vulnerabilities reaching production were
significantly reduced. Furthermore, GitLab enables 15-times
quicker initial product delivery through synchronized
project launches, more frequent releases, and the
introduction of security practices into all stages of the
software development life cycle.

Therefore, test automation in the GitLab CI/CD pipeline
demonstrates consistent cost reduction across all the critical
phases of the mobile application life cycle. By optimizing
the use of labor, reducing release cycles to a minimum,

reducing incidents and failures, and minimizing
maintenance expenses, organizations can significantly
enhance operational efficiency without compromising
product reliability and quality. Real-world implementations
show that the impact of automation extends beyond
technical improvement, revolutionizing the economics of
software delivery through scalability, reusability, and the
integration of security into every layer of the production
environment.

Conclusion

The integration of automated testing into GitLab CI/CD
pipelines has a substantial impact on the economics of
mobile application development and maintenance. A
GitLab-based infrastructure ensures a high degree of
integration between testing tools, quality control
mechanisms, containerization technologies, and scalable
execution environments. This enables a stable and
reproducible software delivery process, contributing to a
reduction in TCO, an increase in ROI, and the reallocation

~ 167 ~

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Atrtificial Intelligence

of human resources in terms of FTE, particularly in
environments with frequent releases and distributed teams.
Automation delivers measurable benefits at all stages of the
application lifecycle-from development to post-release
support-including faster release cycles, fewer production
defects, and reduced manual testing workloads. The
empirical case studies presented demonstrate not only
accelerated delivery times but also significant reductions in
operational costs and downtime. Therefore, the systematic
integration of QA automation into GitLab-based DevOps
workflows can be regarded as a strategic enabler for
improving the efficiency of mobile development and
optimizing the economic performance of digital projects.

References

1. Ruiz ZC, Juan G. The role of DevOps in mobile
application development: CI/CD pipelines for faster
releases. Information Horizons: American Journal of
Library and Information Science Innovation.
2023;1(2):4-12.

2. Koneru NMK. The role of GitLab Runners in CI/CD
pipelines: configuring EC2, Docker, and Kubernetes
build environments. The Eastasouth Journal of
Information System and Computer Science.
2025;2(3):246-271. doi:10.58812/esiscs.v2i03.529

3. Srinivas N, Mandaloju N, Nadimpalli SV. Leveraging
automation in software quality assurance: enhancing
efficiency and reducing defects. The Metascience.
2024;2(4):84-95.

4. Garifullin R. Optimization of frontend application
performance: modern techniques and tools. Professional
Bulletin. Information Technology and Security.
2025;3:10-14.

5. Baitha S, Soorya V, Kothari O, Rajagopal SM, Panda
N. Streamlining software development: a
comprehensive study on CI/CD automation. In: 2024
4th International Conference on Sustainable Expert
Systems (ICSES). IEEE; 2024. p. 1299-1305.
d0i:10.1109/ICSES63445.2024.10763207

6. Nuzhdin D. Performance and fault tolerance of iOS
applications: optimization strategies at the architectural
and Ul thread levels. Cold Science. 2025;19:29-40.
EDN: HFYXYR.

7. Airbus takes flight with GitLab, releasing features 144x
faster. GitLab [Internet]. [cited 2025 Sep 24]. Available
from: https://about.gitlab.com/customers/airbus/

8. Ally Financial cuts pipeline outages and eases security
scanning with GitLab. GitLab [Internet]. [cited 2025
Sep 25]. Available from:
https://about.gitlab.com/customers/ally/

9. GitLab Ultimate’s total economic impact: 483% ROI
over 3 years. GitLab [Internet]. [cited 2025 Sep 27].
Available from: https://about.gitlab.com/blog/gitlab-
ultimates-total-economic-impact-483-roi-over-3-years/

~ 168 ~

https://www.computersciencejournals.com/ijcai

https://www.computersciencejournals.com/ijcai

