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Abstract 
Distributed software now operates at a complexity where infrastructure-level remediation alone does 
not guarantee correct system behaviour. Container orchestration can restart pods and reschedule 
workloads, yet applications frequently degrade due to latent logic defects, configuration regressions, 
dependency instability, and data drift that are invisible to coarse health probes. The dominant practice 
attaches observability as an external stack and relies on dashboards, playbooks, and human 
intervention, introducing detection latency and divorcing telemetry from the semantics embodied in 
code. This article advances an alternative: an AI-infused resilience model that treats observability, 
anomaly detection, diagnosis, and self-healing as intrinsic properties of the application layer and of the 
multi-application environment in which it executes. Evaluation relies on traffic replays, controlled fault 
injection, RCA benchmarks, and explicit cost accounting for instrumentation overhead. The overall 
result reframes “monitor and react” as “observe, infer, and repair,” complementing infrastructure self-
healing with application-level behavioral correctness and system-level coordination. The approach is 
technically feasible with contemporary methods; adoption depends on disciplined instrumentation, 
trustworthy guardrails against false remediation, and progressive automation to build operator 
confidence. With advances in Operational Machine learning for AIOps, Deep learning for operational 
telemetry, empirical studies of distributed tracing for diagnosis in microservices with non-trivial 
overhead, and emergence of open datasets all have begun to standardize, enabling reproducible 
progress in localizing faults. Building on these foundations, the paper specifies a three-layer 
architecture for innate self-healing infrastructure. 
 
Keywords: AI infused resilience, self-healing software, anomaly detection, Root cause analysis 
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Introduction 
Large-scale distributed systems incorporate hundreds of services, frequent releases, 
heterogeneous data stores, and third-party dependencies. Failure is expected rather than 
exceptional, and resilience engineering has therefore emphasized redundancy, load shedding, 
circuit breaking, and rapid infrastructure remediation. Container orchestration contributes 
automated restarts, rescheduling, and autoscaling that markedly improve availability. Yet 
these mechanisms address liveness rather than behavioural correctness: a restarted container 
can still serve wrong answers due to corrupted state, misapplied feature flags, schema drift, 
or downstream timeouts manifested only in particular execution paths. Treating observability 
as a separate platform compounds this gap. Telemetry is produced in the application but 
interpreted elsewhere, often by humans under time pressure. This separation introduces 
detection latency, loses semantic context, and makes remediation a manual, out-of-band 
activity that competes with release velocity and reliability goals [1]  
Infrastructure self-healing maintains liveness through orchestration and autoscaling. 
Application-aware resilience embeds structured telemetry, behavioural invariants, and 
machine-learning detectors that reason about control flow, output distribution and 
performance envelopes; these detectors drive policy-governed remediation actions such as 
rollback, reroute, retry and configuration repair. Cross-application resilience correlates 
signals across services and dependencies to contain failure impact when faults propagate 
beyond a single codebase. Governance is provided by service-level objectives (SLOs) and 
error-budget policy so that autonomous actions remain aligned with reliability targets rather 
than ad hoc heuristics [12]. AIOps research has advanced data-driven operations by applying 
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machine learning to logs, metrics, and traces for failure 
perception, Root-cause analysis (RCA), and assisted 
remediation. A recent survey catalogues techniques across 
failure prediction and anomaly detection, multi-modal signal 
fusion, and automation workflows, while identifying trust, 
evaluation realism, and generalization as open problems [3]. 
In anomaly detection specifically, sequence models over 
logs learn normal control-flow language and flag deviations 
with high sensitivity, enabling detection of functional faults 
that static thresholds miss [4]. For performance and resource 
signals, advanced AI models that learn patterns across many 
metrics over time can spot unusual behavior more reliably 
than simple one-metric detectors [5]. A comprehensive 
review of deep learning for log analysis synthesizes these 
advances and highlights brittleness to log format changes, 
sensitivity to the preprocessing pipeline, and challenges in 
cross-system transfer, motivating instrumentation discipline 
and model maintenance as first-class concerns [6].  
 Surveys of RCA for microservices map methods that 
operate on metrics, traces, logs, and fused signals and 
emphasize the need for explainability and standardized 
evaluation to earn operator trust in semi-autonomous 
workflows [7]. New datasets and benchmarks address the 
historical deficit of common testbeds. MicroIRC shows how 
to pinpoint failures down to the exact service instance, with 
clearer evaluation methods than older system-wide 
approaches, while RCAEval assembles hundreds of failure 
cases across popular microservice benchmarks with 
reproducible baselines spanning metric-based, trace-based, 
and multi-source approaches [8, 9]. Complementary datasets 
such as PetShop and LEMMA-RCA extend the scope across 
domains and fault modes, further enabling objective 
comparison and ablation studies, Together, these resources 
make it possible to measure localization accuracy, 

diagnostic latency, and explanation quality under controlled 
faults and workload variation, an essential precondition for 
responsible automation [10]. Despite these advances, the 
dominant architecture remains layered: build the 
application, attach observability, and rely on external 
analysis and human-driven runbooks.  
This article proposes AI-infused resilience as a corrective. 
The model embeds structured observability, machine-
learning-based detection, and policy-governed remediation 
within applications and coordinates mitigation across 
applications when faults propagate. It integrates with SLOs 
and error-budget practice so that automated actions are 
gated by quantified reliability objectives rather than ad hoc 
rules [2]. The remainder of the paper describes an 
implementable architecture and evaluation method, then 
analyzes feasibility and risks in light of the cited literature.  
 
Methods 
The proposed architecture comprises a developer-linked 
Resilience SDK and an optional sidecar agent (Fig 1). The 
SDK provides compile-time and runtime primitives for 
structured logging with schema stability, metrics with 
explicit cardinality control, and trace hooks aligned to 
domain semantics so that spans represent meaningful 
operations rather than arbitrary call boundaries. Developers 
declare invariants on inputs, outputs, and state transitions; 
define idempotency and compensation contracts for critical 
sections; and identify control-flow waypoints. These 
declarations produce a unified event stream in which logs, 
metrics, and traces share correlation identifiers, enabling 
multi-modal feature extraction without brittle post-hoc joins. 
The optional agent offloads heavier analytics, such as 
multivariate time-series inference or graph-based RCA, and 
returns action proposals and explanations to the SDK. 

 

 
 

Fig 1: Three-layer architecture for AI-driven self-healing application showing infrastructure, application and cross-application resilience 
with supporting SDK and Sidecar agent 

 
Detection is pluggable and layered. For logs, sequence-
learning models trained on normal execution learn the 
language of events and detect unseen or improbable 
transitions; DeepLog demonstrates the effectiveness of this 
approach for operational logs, and subsequent work 
generalizes the idea to richer embeddings and parsers [4]. For 
metrics, multivariate stochastic recurrent models such as 
OmniAnomaly estimate reconstruction probability and flag 
unlikely windows, capturing cross-signal dependence that 
univariate detectors miss [5]. For traces, language-model-
style encoders over span sequences or graph encoders over 
service call graphs detect path deviations and anomalous 
service interactions; studies have shown that combining 

distributed tracing with learned representations improves 
sensitivity to cross-service faults compared to metrics alone 
[11]. The SDK exposes these detectors through stable 
interfaces and allows services to choose appropriate online 
or near-line execution plans. Online detection computes 
streaming features and low-latency scores in-process to 
reduce time-to-detect. Near-line detection in the agent uses 
larger windows and more computationally demanding 
models for deeper analysis and RCA. 
Remediation is governed by a policy engine that binds 
conditions to actions with auditable guardrails. Policies 
reference SLO state and error budget so that high-disruption 
actions are gated by quantified reliability pressure rather 
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than raw detector outputs [2]. A staged-autonomy model 
regulates trust: newly added actions begin in “observe” 
mode where only evidence and counterfactuals are recorded; 
advance to “suggest” mode where human confirmation is 
required; and finally graduate to “auto” for well-understood 
classes of faults with strong safety evidence. Actions 
operate at multiple scopes. Local actions include rolling 
back a feature flag or build, replaying a compensating 
transaction, draining a worker pool, invalidating a cache 
region, or rotating credentials. Cross-application actions 
operate through contracts rather than assumptions: queue 
requests to a degraded dependency, reduce concurrency via 
adaptive backpressure, or redirect traffic to a fallback 
implementation that satisfies essential invariants. Every 
action produces an explanation artifact with saliency over 
signals, implicated spans or metrics, detector confidence, 
and predicted SLO impact to support operator review and 
continuous improvement [7]. 

Closed-loop learning is built into the incident lifecycle. 
When a detector fires, the system records features, raw 
evidence, the chosen action and its scope, and outcomes 
such as time-to-recover, post-action error rate, and SLO 
minutes saved. Post-incident, this record is labeled as 
improved, worsened, or neutral and used to recalibrate 
thresholds and fine-tune models. Drift monitors watch input 
distributions and model residuals; when drift is detected, the 
system either adapts thresholds, switches to a fallback 
detector with known bias-variance properties, or initiates 
retraining using safe snapshots, consistent with observations 
from production drift mitigation research that not all drift is 
harmful and that indiscriminate retraining can degrade 
reliability [12, 13]. This loop reduces false positives and 
negatives over time and supports adaptive sampling in 
tracing to stay within overhead budgets documented by 
empirical studies [14]. 

 

 
 

Fig 2: Flow of anomaly detection, RCA, policy-based remediation, and closed-loop learning in the proposed framework 
 

Evaluation proceeds along four axes (Fig 2). First, detection 
quality is assessed via traffic replays and controlled fault 
injection covering latency inflation, dependency timeouts, 
configuration regressions, data schema drift, and logic 
toggles hidden behind feature flags. The principal metrics 
are time-to-detect and precision/recall, with ablations for 
individual modalities to measure contribution. Second, 
remediation efficacy is quantified using time-to-recover and 
error-budget minutes saved relative to a human-in-the-loop 
baseline. Third, RCA quality is evaluated on standardized 
datasets and benchmarks for root-cause localization, 
including instance-level metrics where available, using 
ranking metrics such as Recall@k and Mean Reciprocal 
Rank [8-10]. Fourth, operational overhead is measured for 
SDK and agent using tail-latency and CPU/memory 
counters, and for tracing specifically the design follows 
published guidance on instrumentation overhead and 
adaptive sampling [15]. The evaluation protocol distinguishes 
between local incidents resolvable within a single service 
and cross-application incidents requiring coordinated 
mitigation. 
Interoperability is addressed explicitly. The SDK integrates 
with existing observability backends via Open Telemetry 
exporters and can operate in a “shim” mode that adds 
semantic context to existing spans and logs without 
replacing the underlying pipeline. Policy, detector 
configuration, and action catalogs are defined declaratively 

and stored version-controlled so that reliability decisions are 
reproducible and auditable. Security and safety 
considerations include scoping credentials for remediation 
actions, enforcing least privilege for cross-service 
operations, and requiring out-of-band human confirmation 
for actions that alter data at rest. 
 
Discussion 
The feasibility of embedding AI-driven resilience within 
applications rests on the empirical success of anomaly 
detection over operational telemetry and on the increasing 
standardization of RCA evaluation. Sequence models over 
logs and multivariate variational models for metrics 
consistently detect subtle failure modes that threshold rules 
overlook, provided that training data represents normal 
variability and that log parsing is stable [4-6]. For 
microservices, RCA surveys and instance-level studies 
demonstrate automated localization across telemetry 
modalities, while emerging benchmarks such as RCAEval, 
PetShop, and LEMMA-RCA make it possible to compare 
methods across datasets and domains with shared metrics 
and baselines [11-14]. These developments support the claim 
that detection and diagnosis can be made sufficiently 
reliable to trigger at least low-risk automated actions with 
bounded failure impact.  
There are, however, material risks. Instrumentation has cost: 
Studies show that detailed tracing in microservices adds real 
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performance costs, and full tracing is too slow for systems 
with strict constraints. Any practical system must therefore 
employ selective instrumentation and adaptive sampling, 
raising the bar for SDK design and configuration [14]. False 
positives and false negatives in detection can produce 
harmful or missed actions. Mitigation requires staged 
autonomy, SLO-aware gating, and conservative defaults that 
privilege containment over aggressive repair. Cold-start and 
drift complicate ML deployment: models trained on 
yesterday’s “normal” can degrade as workload and software 
evolve, and literature on production drift mitigation 
recommends targeted adaptation rather than constant 
retraining [12, 13]. Trust and governance remain central. 
Surveys emphasize explainability and standardized 
evaluation as prerequisites for operator acceptance; 
explanations must cite implicated spans and metrics, 
quantify confidence, and connect projected action effects to 
SLOs rather than opaque scores [3, 7].  
Positioned against external observability platforms, AI-
infused resilience does not attempt to replace them. Instead, 
it internalizes semantics at the point of production—where 
invariants and intent are known—and employs the external 
stack for storage, visualization, collaboration, and heavy 
analytics. This division shortens detection and recovery 
paths for recurring classes of faults while preserving the 
established tooling and practices teams rely on. In 
environments with heterogeneous services and 
organizational boundaries, cross-application resilience must 
operate through explicit contracts and policy rather than 
implicit authority; the architecture therefore emphasizes 
scoped actions, minimal privileges, and auditable 
workflows. 
The research agenda suggested by this model includes 
policy synthesis that learns action policies from incident 
history under SLO constraints; multi-modal fusion methods 
robust to missing telemetry and partial observability; 
explanations that surface minimal sufficient evidence for 
both detection and localization; and end-to-end benchmarks 
that jointly score detection, RCA, and remediation outcomes 
under workload variability. The availability of RCA datasets 
and the growing body of log and metric anomaly detection 
research provide a foundation for such integrated evaluation 
[3, 5].  
 
Conclusion 
Embedding detection, diagnosis, and repair within 
applications reframes resilience from an external, reactive 
process into a native design principle. A three-layer 
architecture aligns infrastructure liveness with application-
level behavioral correctness and cross-application 
coordination. The proposed resilience SDK and sidecar 
agent make this approach implementable with current 
techniques, provided that instrumentation is disciplined, 
policies are SLO-aware and auditable, autonomy is staged, 
and evaluation is rigorous. Contemporary research and 
benchmarks in anomaly detection, tracing, and RCA 
indicate that such systems can reduce time-to-detect and 
time-to-recover, contain failure impact, and free engineers 
to focus on design and evolution rather than firefighting. 
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