
~ 129 ~

International Journal of Computing and Artificial Intelligence 2025; 6(2): 129-132

E-ISSN: 2707-658X
P-ISSN: 2707-6571
www.computersciencejournals.
com/ijcai
IJCAI 2025; 6(2): 129-132
Received: 07-06-2025
Accepted: 12-07-2025

V Phani Kumar
Chief Technical Officer,
Terastar Networks Pvt Ltd,
Hyderabad, Telangana, India

Avula Meghanatha Reddy
Managing Director, Terastar
Networks Pvt Ltd,
Hyderabad, Telangana, India

Corresponding Author:
V Phani Kumar
Chief Technical Officer,
Terastar Networks Pvt Ltd,
Hyderabad, Telangana, India

Embedding AI-driven resilience within applications:

Toward native self-healing software- a review

V Phani Kumar and Avula Meghanatha Reddy

DOI: https://doi.org/10.33545/27076571.2025.v6.i2b.188

Abstract
Distributed software now operates at a complexity where infrastructure-level remediation alone does
not guarantee correct system behaviour. Container orchestration can restart pods and reschedule
workloads, yet applications frequently degrade due to latent logic defects, configuration regressions,
dependency instability, and data drift that are invisible to coarse health probes. The dominant practice
attaches observability as an external stack and relies on dashboards, playbooks, and human
intervention, introducing detection latency and divorcing telemetry from the semantics embodied in
code. This article advances an alternative: an AI-infused resilience model that treats observability,
anomaly detection, diagnosis, and self-healing as intrinsic properties of the application layer and of the
multi-application environment in which it executes. Evaluation relies on traffic replays, controlled fault
injection, RCA benchmarks, and explicit cost accounting for instrumentation overhead. The overall
result reframes “monitor and react” as “observe, infer, and repair,” complementing infrastructure self-
healing with application-level behavioral correctness and system-level coordination. The approach is
technically feasible with contemporary methods; adoption depends on disciplined instrumentation,
trustworthy guardrails against false remediation, and progressive automation to build operator
confidence. With advances in Operational Machine learning for AIOps, Deep learning for operational
telemetry, empirical studies of distributed tracing for diagnosis in microservices with non-trivial
overhead, and emergence of open datasets all have begun to standardize, enabling reproducible
progress in localizing faults. Building on these foundations, the paper specifies a three-layer
architecture for innate self-healing infrastructure.

Keywords: AI infused resilience, self-healing software, anomaly detection, Root cause analysis
(RCA), Artificial Intelligence for IT Operations (AIOps), operational telemetry, Service level
objectives (SLO’s), progressive automation

Introduction
Large-scale distributed systems incorporate hundreds of services, frequent releases,
heterogeneous data stores, and third-party dependencies. Failure is expected rather than
exceptional, and resilience engineering has therefore emphasized redundancy, load shedding,
circuit breaking, and rapid infrastructure remediation. Container orchestration contributes
automated restarts, rescheduling, and autoscaling that markedly improve availability. Yet
these mechanisms address liveness rather than behavioural correctness: a restarted container
can still serve wrong answers due to corrupted state, misapplied feature flags, schema drift,
or downstream timeouts manifested only in particular execution paths. Treating observability
as a separate platform compounds this gap. Telemetry is produced in the application but
interpreted elsewhere, often by humans under time pressure. This separation introduces
detection latency, loses semantic context, and makes remediation a manual, out-of-band
activity that competes with release velocity and reliability goals [1]
Infrastructure self-healing maintains liveness through orchestration and autoscaling.
Application-aware resilience embeds structured telemetry, behavioural invariants, and
machine-learning detectors that reason about control flow, output distribution and
performance envelopes; these detectors drive policy-governed remediation actions such as
rollback, reroute, retry and configuration repair. Cross-application resilience correlates
signals across services and dependencies to contain failure impact when faults propagate
beyond a single codebase. Governance is provided by service-level objectives (SLOs) and
error-budget policy so that autonomous actions remain aligned with reliability targets rather
than ad hoc heuristics [12]. AIOps research has advanced data-driven operations by applying

https://www.computersciencejournals.com/ijcai
https://www.computersciencejournals.com/ijcai
https://doi.org/10.33545/27076571.2025.v6.i2b.188

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 130 ~

machine learning to logs, metrics, and traces for failure
perception, Root-cause analysis (RCA), and assisted
remediation. A recent survey catalogues techniques across
failure prediction and anomaly detection, multi-modal signal
fusion, and automation workflows, while identifying trust,
evaluation realism, and generalization as open problems [3].
In anomaly detection specifically, sequence models over
logs learn normal control-flow language and flag deviations
with high sensitivity, enabling detection of functional faults
that static thresholds miss [4]. For performance and resource
signals, advanced AI models that learn patterns across many
metrics over time can spot unusual behavior more reliably
than simple one-metric detectors [5]. A comprehensive
review of deep learning for log analysis synthesizes these
advances and highlights brittleness to log format changes,
sensitivity to the preprocessing pipeline, and challenges in
cross-system transfer, motivating instrumentation discipline
and model maintenance as first-class concerns [6].
 Surveys of RCA for microservices map methods that
operate on metrics, traces, logs, and fused signals and
emphasize the need for explainability and standardized
evaluation to earn operator trust in semi-autonomous
workflows [7]. New datasets and benchmarks address the
historical deficit of common testbeds. MicroIRC shows how
to pinpoint failures down to the exact service instance, with
clearer evaluation methods than older system-wide
approaches, while RCAEval assembles hundreds of failure
cases across popular microservice benchmarks with
reproducible baselines spanning metric-based, trace-based,
and multi-source approaches [8, 9]. Complementary datasets
such as PetShop and LEMMA-RCA extend the scope across
domains and fault modes, further enabling objective
comparison and ablation studies, Together, these resources
make it possible to measure localization accuracy,

diagnostic latency, and explanation quality under controlled
faults and workload variation, an essential precondition for
responsible automation [10]. Despite these advances, the
dominant architecture remains layered: build the
application, attach observability, and rely on external
analysis and human-driven runbooks.
This article proposes AI-infused resilience as a corrective.
The model embeds structured observability, machine-
learning-based detection, and policy-governed remediation
within applications and coordinates mitigation across
applications when faults propagate. It integrates with SLOs
and error-budget practice so that automated actions are
gated by quantified reliability objectives rather than ad hoc
rules [2]. The remainder of the paper describes an
implementable architecture and evaluation method, then
analyzes feasibility and risks in light of the cited literature.

Methods
The proposed architecture comprises a developer-linked
Resilience SDK and an optional sidecar agent (Fig 1). The
SDK provides compile-time and runtime primitives for
structured logging with schema stability, metrics with
explicit cardinality control, and trace hooks aligned to
domain semantics so that spans represent meaningful
operations rather than arbitrary call boundaries. Developers
declare invariants on inputs, outputs, and state transitions;
define idempotency and compensation contracts for critical
sections; and identify control-flow waypoints. These
declarations produce a unified event stream in which logs,
metrics, and traces share correlation identifiers, enabling
multi-modal feature extraction without brittle post-hoc joins.
The optional agent offloads heavier analytics, such as
multivariate time-series inference or graph-based RCA, and
returns action proposals and explanations to the SDK.

Fig 1: Three-layer architecture for AI-driven self-healing application showing infrastructure, application and cross-application resilience
with supporting SDK and Sidecar agent

Detection is pluggable and layered. For logs, sequence-
learning models trained on normal execution learn the
language of events and detect unseen or improbable
transitions; DeepLog demonstrates the effectiveness of this
approach for operational logs, and subsequent work
generalizes the idea to richer embeddings and parsers [4]. For
metrics, multivariate stochastic recurrent models such as
OmniAnomaly estimate reconstruction probability and flag
unlikely windows, capturing cross-signal dependence that
univariate detectors miss [5]. For traces, language-model-
style encoders over span sequences or graph encoders over
service call graphs detect path deviations and anomalous
service interactions; studies have shown that combining

distributed tracing with learned representations improves
sensitivity to cross-service faults compared to metrics alone
[11]. The SDK exposes these detectors through stable
interfaces and allows services to choose appropriate online
or near-line execution plans. Online detection computes
streaming features and low-latency scores in-process to
reduce time-to-detect. Near-line detection in the agent uses
larger windows and more computationally demanding
models for deeper analysis and RCA.
Remediation is governed by a policy engine that binds
conditions to actions with auditable guardrails. Policies
reference SLO state and error budget so that high-disruption
actions are gated by quantified reliability pressure rather

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 131 ~

than raw detector outputs [2]. A staged-autonomy model
regulates trust: newly added actions begin in “observe”
mode where only evidence and counterfactuals are recorded;
advance to “suggest” mode where human confirmation is
required; and finally graduate to “auto” for well-understood
classes of faults with strong safety evidence. Actions
operate at multiple scopes. Local actions include rolling
back a feature flag or build, replaying a compensating
transaction, draining a worker pool, invalidating a cache
region, or rotating credentials. Cross-application actions
operate through contracts rather than assumptions: queue
requests to a degraded dependency, reduce concurrency via
adaptive backpressure, or redirect traffic to a fallback
implementation that satisfies essential invariants. Every
action produces an explanation artifact with saliency over
signals, implicated spans or metrics, detector confidence,
and predicted SLO impact to support operator review and
continuous improvement [7].

Closed-loop learning is built into the incident lifecycle.
When a detector fires, the system records features, raw
evidence, the chosen action and its scope, and outcomes
such as time-to-recover, post-action error rate, and SLO
minutes saved. Post-incident, this record is labeled as
improved, worsened, or neutral and used to recalibrate
thresholds and fine-tune models. Drift monitors watch input
distributions and model residuals; when drift is detected, the
system either adapts thresholds, switches to a fallback
detector with known bias-variance properties, or initiates
retraining using safe snapshots, consistent with observations
from production drift mitigation research that not all drift is
harmful and that indiscriminate retraining can degrade
reliability [12, 13]. This loop reduces false positives and
negatives over time and supports adaptive sampling in
tracing to stay within overhead budgets documented by
empirical studies [14].

Fig 2: Flow of anomaly detection, RCA, policy-based remediation, and closed-loop learning in the proposed framework

Evaluation proceeds along four axes (Fig 2). First, detection
quality is assessed via traffic replays and controlled fault
injection covering latency inflation, dependency timeouts,
configuration regressions, data schema drift, and logic
toggles hidden behind feature flags. The principal metrics
are time-to-detect and precision/recall, with ablations for
individual modalities to measure contribution. Second,
remediation efficacy is quantified using time-to-recover and
error-budget minutes saved relative to a human-in-the-loop
baseline. Third, RCA quality is evaluated on standardized
datasets and benchmarks for root-cause localization,
including instance-level metrics where available, using
ranking metrics such as Recall@k and Mean Reciprocal
Rank [8-10]. Fourth, operational overhead is measured for
SDK and agent using tail-latency and CPU/memory
counters, and for tracing specifically the design follows
published guidance on instrumentation overhead and
adaptive sampling [15]. The evaluation protocol distinguishes
between local incidents resolvable within a single service
and cross-application incidents requiring coordinated
mitigation.
Interoperability is addressed explicitly. The SDK integrates
with existing observability backends via Open Telemetry
exporters and can operate in a “shim” mode that adds
semantic context to existing spans and logs without
replacing the underlying pipeline. Policy, detector
configuration, and action catalogs are defined declaratively

and stored version-controlled so that reliability decisions are
reproducible and auditable. Security and safety
considerations include scoping credentials for remediation
actions, enforcing least privilege for cross-service
operations, and requiring out-of-band human confirmation
for actions that alter data at rest.

Discussion
The feasibility of embedding AI-driven resilience within
applications rests on the empirical success of anomaly
detection over operational telemetry and on the increasing
standardization of RCA evaluation. Sequence models over
logs and multivariate variational models for metrics
consistently detect subtle failure modes that threshold rules
overlook, provided that training data represents normal
variability and that log parsing is stable [4-6]. For
microservices, RCA surveys and instance-level studies
demonstrate automated localization across telemetry
modalities, while emerging benchmarks such as RCAEval,
PetShop, and LEMMA-RCA make it possible to compare
methods across datasets and domains with shared metrics
and baselines [11-14]. These developments support the claim
that detection and diagnosis can be made sufficiently
reliable to trigger at least low-risk automated actions with
bounded failure impact.
There are, however, material risks. Instrumentation has cost:
Studies show that detailed tracing in microservices adds real

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 132 ~

performance costs, and full tracing is too slow for systems
with strict constraints. Any practical system must therefore
employ selective instrumentation and adaptive sampling,
raising the bar for SDK design and configuration [14]. False
positives and false negatives in detection can produce
harmful or missed actions. Mitigation requires staged
autonomy, SLO-aware gating, and conservative defaults that
privilege containment over aggressive repair. Cold-start and
drift complicate ML deployment: models trained on
yesterday’s “normal” can degrade as workload and software
evolve, and literature on production drift mitigation
recommends targeted adaptation rather than constant
retraining [12, 13]. Trust and governance remain central.
Surveys emphasize explainability and standardized
evaluation as prerequisites for operator acceptance;
explanations must cite implicated spans and metrics,
quantify confidence, and connect projected action effects to
SLOs rather than opaque scores [3, 7].
Positioned against external observability platforms, AI-
infused resilience does not attempt to replace them. Instead,
it internalizes semantics at the point of production—where
invariants and intent are known—and employs the external
stack for storage, visualization, collaboration, and heavy
analytics. This division shortens detection and recovery
paths for recurring classes of faults while preserving the
established tooling and practices teams rely on. In
environments with heterogeneous services and
organizational boundaries, cross-application resilience must
operate through explicit contracts and policy rather than
implicit authority; the architecture therefore emphasizes
scoped actions, minimal privileges, and auditable
workflows.
The research agenda suggested by this model includes
policy synthesis that learns action policies from incident
history under SLO constraints; multi-modal fusion methods
robust to missing telemetry and partial observability;
explanations that surface minimal sufficient evidence for
both detection and localization; and end-to-end benchmarks
that jointly score detection, RCA, and remediation outcomes
under workload variability. The availability of RCA datasets
and the growing body of log and metric anomaly detection
research provide a foundation for such integrated evaluation
[3, 5].

Conclusion
Embedding detection, diagnosis, and repair within
applications reframes resilience from an external, reactive
process into a native design principle. A three-layer
architecture aligns infrastructure liveness with application-
level behavioral correctness and cross-application
coordination. The proposed resilience SDK and sidecar
agent make this approach implementable with current
techniques, provided that instrumentation is disciplined,
policies are SLO-aware and auditable, autonomy is staged,
and evaluation is rigorous. Contemporary research and
benchmarks in anomaly detection, tracing, and RCA
indicate that such systems can reduce time-to-detect and
time-to-recover, contain failure impact, and free engineers
to focus on design and evolution rather than firefighting.

References
1. Li B, Chen T, Zhu L, Zhou A. Enjoy your

observability: An industrial survey of microservice
tracing and analysis. Empirical software engineering.
2022;27(1):1-11.

2. Service Level Objectives, SRE Book and Workbook
resources, 2016–2020 editions.

3. Zhang L, Qian Z, He Y, Zheng Q, Ma X. A Survey of
AIOps in the Era of Large Language Models. J.ACM.
2025;37(4):1-35.

4. Du M, Li F, Zheng G, Srikumar V. Deep Log: Anomaly
detection and diagnosis from system logs through deep
learning. Proceedings of ACM SIGSAC conference on
computer and communications security. 2017; 1285-
1298.

5. Su Y, Zhao Y, Niu C, Liu R, Pei W, Pei D. Omni
anomaly: Robust anomaly detection for multivariate
time series. Proceedings of the 25th ACM SIGKDD
International conference on knowledge discovery and
data mining. 2019;2828 – 2837.

6. Landauer M, Onder S, Skopik F, Wurzenberger M.
Deep learning for anomaly detection in log data: A
survey. Machine Learning with Applications.
2023;12:1-19,100470.

7. Wang Tingting, Qi Guilin. A comprehensive survey on
root cause analysis in (micro) services: methodologies,
challenges, and trends.
2024; 10.48550/arXiv.2408.00803.

8. Zhu Y, Liu Z, Liu Q, Xie X, Zhou Y. Micro IRC:
Instance-level root cause localization for microservices.
Journal of systems and software. 2024;216: 112145.

9. Pham L, Zhang H, Ha H, Salim F, Zhang X. RCAEval:
A benchmark for root cause analysis of microservice
systems with telemetry data. ACM Proceedings, 2025;
10.48550/arXiv.2412.17015.

10. Hardt M, Orchard WR, Blobaum P, Kasiviswanathan S,
Kirschbaum E. The petshop dataset finding causes of
performance issues across microservices. 2023;
arXiv:2311.04806v2.

11. Kohyarnejadfard I, Ghobaei-Arani M, Masdari M.
Anomaly detection in microservice environments using
distributed tracing data and NLP. Journal of cloud
computing. 2022;11(25):1-16.

12. Mallick A, Hsieh K, Arzani B, Joshi G. Matchmaker:
Data drift mitigation in machine learning for large-scale
systems. Proceedings of MLSys.2022;1-25.

13. Lewis GA, Echeverría S, Pons L, Chrabaszcz J. Augur:
A step toward realistic drift detection in production ml
systems. ICSE: 44th International Conference on
Software Engineering. 2022;37-44.
10.1145/3526073.3527590.

14. Mallick A, Hsieh K, Arzani B, Joshi G. Matchmaker:
Data drift mitigation in machine learning for large-scale
systems. Proceedings of MLSys. 2022;1-25.

15. Panahandeh M, Panahi S, Gandomi A. Service
anomaly: Anomaly detection in microservice systems
combining distributed tracing and metrics. Journal of
Systems and Software. 2024;209(3):1-23.

https://www.computersciencejournals.com/ijcai

