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Abstract 
The increasing contamination of water resources by heavy metals necessitates the development of 

efficient and sustainable methods for their removal. In this study, we explored the use of Artificial 

Intelligence (AI)-driven optimization for the synthesis of nanoparticles aimed at enhancing heavy metal 

removal from wastewater. The primary objective was to design an AI-based framework that could 

optimize nanoparticle synthesis conditions such as precursor ratios, temperature, and reaction time to 

achieve maximum adsorption efficiency while maintaining nanoparticle stability and reusability. To 

achieve this, we utilized Bayesian optimization and metaheuristics to guide the synthesis of metal-

based nanoparticles (Fe₃O₄, ZnO-MXene, rGO-titanate) for Pb²⁺, Cd²⁺, As(V), and Cr(VI) removal 

from synthetic wastewater. 

The experimental results revealed that the AI-optimized nanoparticles exhibited significantly improved 

adsorption capacities compared to control materials synthesized using traditional methods. The 

maximum adsorption capacities (q_max) for Pb²⁺, Cd²⁺, As(V), and Cr(VI) were 212.6, 185.4, 156.8, 

and 244.1 mg/g, respectively. Additionally, AI-optimized nanoparticles demonstrated excellent 

selectivity in multi-ion systems and retained over 90% of their initial adsorption capacity after five 

regeneration cycles, outperforming control nanoparticles. Statistical analyses confirmed that these 

improvements were statistically significant (p<0.05). 

The AI-driven optimization framework demonstrated significant advantages in nanoparticle synthesis, 

offering higher efficiency, selectivity, and regeneration compared to traditional approaches. These 

results suggest that AI-driven methodologies can provide an efficient and sustainable solution for 

heavy metal removal from wastewater. Future studies should focus on scaling these AI-based processes 

and further exploring their real-world applications in wastewater treatment systems. 
 

Keywords: Artificial intelligence, nanoparticle synthesis, heavy metal removal, wastewater treatment, 

adsorption capacity, Bayesian optimization, regeneration, ZnO-MXene, Fe₃O₄, rGO-titanate, 

wastewater management, environmental remediation 

 

Introduction 

Industrialization, mining, and urban runoff continue to release toxic metals such as arsenic, 

lead, cadmium, chromium, and mercury into aquatic systems, where their persistence, 

bioaccumulation, and multi-organ toxicity create disproportionate burdens on public health 

and ecosystems; accordingly, regulators have tightened standards e.g., the World Health 

Organization’s Guidelines for Drinking-Water Quality maintain stringent, low-µg L⁻¹ limits 

for As, Pb, and Cd yet compliance remains uneven across regions with aging infrastructure 

and diffuse industrial discharges [1-4]. In this context, engineered nanomaterials (e.g., iron 

oxides, nano-zero-valent iron, TiO₂, MnO₂, graphene- and MXene-based hybrids, and bio-

derived/“green” nanoparticles) have emerged as versatile adsorbents and reactive media 

because of their high specific surface areas, tunable surface chemistry, and facile magnetic 

separation [5-11]; recent reports demonstrate near-quantitative removal of Pb²⁺, Cd²⁺, 

AsO₄³⁻/AsO₃³⁻, and Cr(VI) in complex matrices using ZnO-MXene, rGO-titanate, and iron-

based platforms, underscoring the potential of rationally designed nanocomposites for 

fieldable water treatment [12, 13, 6]. However, performance of nanosorbents is notoriously 

sensitive to synthesis pathways (precursor concentrations, reductant identity, pH/ionic 

strength, temperature/time profiles, capping/ligand environment) as well as post-synthetic 

functionalization and aggregation state, producing batch-to-batch variability and constraining 

translation from laboratory to practice [5-7, 10, 11]. Traditional design-of-experiments (DoE) and 

response-surface optimization help map low-dimensional spaces, but they become  

https://www.computersciencejournals.com/ijcai
https://www.computersciencejournals.com/ijcai
https://www.doi.org/10.33545/27076571.2025.v6.i2a.178


International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai 

~ 65 ~ 

resource-intensive and myopic in high-order, non-linear 

design landscapes characteristic of colloidal synthesis, 

where trade-offs among particle size/shape dispersity, phase 

purity, specific surface area, and surface-site chemistry 

directly govern adsorption capacity (q_max), kinetics, 

selectivity, and regeneration [18, 30]. By contrast, recent 

progress in AI-assisted materials synthesis including 

multivariate Bayesian optimization (BO), active learning, 

and hybrid physics-ML models has demonstrated rapid, 

sample-efficient navigation of complex chemical spaces to 

target nanoparticle size/monodispersity, phase, and 

morphology (e.g., BO-guided CoO colloids, Au nanorods, 

and MOF nucleation control), while explicitly balancing 

multiple objectives and experimental constraints [14-17]. 

Parallel advances in AI for adsorption modeling and process 

optimization spanning neural networks, kernel methods, 

ensemble learners, AutoML, and metaheuristics (GA/PSO) 

now enable accurate prediction of heavy-metal removal 

efficiency from heterogeneous literature and pilot datasets; 

these models capture coupled effects of pH, ionic strength, 

contact time, initial concentration, competing ions, and 

sorbent dose, often surpassing classical isotherm-kinetic 

regressions and supporting inverse design (back-solving for 

optimal conditions or material descriptors) [19-28]. Problem 

statement. Despite the complementary maturation of 

nanosorbent chemistry and AI, there is no widely adopted, 

end-to-end framework that links AI-guided nanoparticle 

synthesis decisions directly to water-treatment performance 

under realistic matrices i.e., closing the loop from synthesis 

→ structure → surface chemistry → adsorption/selectivity 

→ regeneration and fouling resistance. Bridging this gap is 

non-trivial: synthesis variables (multi-component 

precursors, solvents, reductants, dopants, ligands) induce 

non-linear, interacting effects on particle size distribution, 

crystallinity, defect density, and surface functional groups; 

these, in turn, modulate electrostatic complexation, inner-

sphere coordination, redox/reductive precipitation, and 

diffusion-limited uptake in waters with fluctuating pH, 

alkalinity, NOM, and co-ions [5-7, 22-24]. Objectives. This 

study therefore (i) curates and harmonizes a multi-fidelity 

dataset linking synthesis parameters and post-synthetic 

modifications of metal-oxide/metal-based nanoparticles 

(e.g., Fe₃O₄, nZVI, ZnO-MXene, rGO-titanate) to 

adsorption metrics (q_max, rate constants, distribution 

coefficients) for Pb, Cd, As, and Cr across background 

chemistries; (ii) develops a multi-objective AI pipeline that 

couples Bayesian optimization and metaheuristics with 

uncertainty quantification to propose synthesis recipes 

(precursor ratios, temperature/time ramps, ligand regimes) 

predicted to maximize removal efficiency, selectivity under 

interferents, and regeneration durability while minimizing 

cost and environmental footprint; (iii) experimentally 

validates recommended recipes via standardized 

characterization (size/shape dispersity, crystallinity, surface 

area, zeta potential, XPS/FTIR) and bench-scale adsorption 

tests against relevant isotherm/kinetic models; and (iv) 

quantifies generalization under matrix perturbations and 

cycling. Hypothesis. We hypothesize that AI-driven, closed-

loop optimization of nanoparticle synthesis explicitly 

targeting adsorption-relevant structure-property 

relationships and evaluated under realistic water chemistries 

will yield significantly higher and more robust heavy-metal 

removal (greater q_max and faster pseudo-second-order 

kinetics), improved selectivity in the presence of competing 

anions/cations, and enhanced regenerability relative to 

materials produced via conventional DoE/RSM protocols, 

while achieving comparable or reduced synthesis cost and 

process complexity [14-16, 18-28, 12, 13]. Collectively, the 

proposed framework aims to operationalize AI-materials 

integration for deployable, economical, and regulation-

aligned removal of priority metals in wastewater and 

drinking-water treatment. 

 

Materials and Methods 

Materials 

Analytical-grade metal salts and precursors, including ferric 

chloride hexahydrate (FeCl₃·6H₂O), ferrous sulfate 

heptahydrate (FeSO₄·7H₂O), zinc acetate dihydrate 

(Zn(CH₃COO)₂·2H₂O), sodium borohydride (NaBH₄), 

titanium butoxide (Ti(OBu)₄), potassium permanganate 

(KMnO₄), and graphene oxide (GO) powder, were procured 

from Sigma-Aldrich (USA) and Merck (India) with stated 

purities >99% [5-7, 12, 13]. All solutions were prepared using 

ultrapure water (18.2 MΩ·cm, Milli-Q). For green synthesis 

variants, plant extracts (Moringa oleifera, Azadirachta 

indica) were prepared by aqueous boiling and filtration 

following reported protocols [10, 11]. Glassware was acid-

washed in 10% HNO₃, rinsed thoroughly, and oven-dried 

prior to use to prevent cross-contamination [4, 8]. Stock 

solutions (1000 mg L⁻¹) of target heavy metals lead (Pb²⁺), 

cadmium (Cd²⁺), arsenate [As(V)], and chromate [Cr(VI)] 

were prepared from Pb(NO₃)₂, Cd(NO₃)₂·4H₂O, 

Na₂HAsO₄·7H₂O, and K₂Cr₂O₇, respectively, and diluted 

freshly for each experiment [1-4]. Adsorption experiments 

used synthetic wastewater matrices mimicking realistic 

ionic backgrounds (Ca²⁺, Mg²⁺, Na⁺, Cl⁻, SO₄²⁻) based on 

WHO guideline concentrations [1, 2]. Characterization 

reagents for BET surface area (N₂ adsorption-desorption), 

zeta potential, Fourier transform infrared spectroscopy 

(FTIR), and X-ray photoelectron spectroscopy (XPS) were 

sourced from authorized suppliers [5, 6]. Machine learning 

and Bayesian optimization pipelines were implemented 

using Python 3.11, with Scikit-learn, GPyOpt, Optuna, and 

TensorFlow libraries [14-17, 19-24]. Dataset compilation utilized 

literature-mined adsorption metrics from peer-reviewed 

studies and in-house experimental runs, standardized to SI 

units [18, 22, 25]. 

 

Methods 
Nanoparticle synthesis followed an AI-driven optimization 
framework where Bayesian optimization and genetic 
algorithm modules iteratively proposed synthesis conditions 
(precursor ratios, pH, temperature ramp, reaction time, 
capping agents) [14-16, 19, 21]. Each proposed recipe was 
experimentally implemented using either chemical co-
precipitation (Fe₃O₄, nZVI), hydrothermal methods (ZnO-
MXene, rGO-titanate), or green synthesis routes [5-7, 10-13]. 
Reaction conditions were precisely controlled using a 
programmable temperature-time controller, with nitrogen 
purging where required to prevent oxidation. Post-synthesis, 
nanoparticles were washed repeatedly with ultrapure water 
and ethanol, freeze-dried, and stored in desiccators. Material 
characterization included X-ray Diffraction (XRD) for 
crystallinity and phase purity, Transmission Electron 
Microscopy (TEM) for particle size and morphology, BET 
surface area and pore size analysis, zeta potential for surface 
charge, and XPS/FTIR for surface functional groups [5, 6, 12, 

13]. Adsorption tests were conducted in 250 mL Erlenmeyer 
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flasks containing 100 mL of metal ion solution (10-100 mg 
L⁻¹) at optimized pH, shaken at 150 rpm at 25 ± 1 °C. 
Samples were withdrawn at predetermined intervals, filtered 
(0.22 μm), and analyzed by ICP-OES for residual metal 
concentration. Kinetic modeling employed pseudo-first-
order, pseudo-second-order, and intraparticle diffusion 
models, while equilibrium data were fitted to Langmuir, 
Freundlich, and Sips isotherms [18, 22, 28]. Regeneration was 
evaluated over five adsorption-desorption cycles using 0.1 
M HCl or NaOH eluents. The AI pipeline ingested synthesis 
descriptors and corresponding adsorption metrics to update 
the surrogate model, iteratively refining synthesis conditions 
until convergence on multi-objective optima (adsorption 
capacity, selectivity, and regeneration) [14-17, 19-24, 26-28]. 
Statistical analyses were performed using R 4.3.2 with one-
way ANOVA and Tukey’s HSD test at p < 0.05 to evaluate 
significance across treatments [18, 27, 31]. 
 

Results 
The AI-driven synthesis optimization framework 
successfully identified nanoparticle synthesis conditions that 
yielded significant improvements in heavy metal removal 
efficiency compared to conventionally synthesized 
counterparts [14-17, 19, 21]. Across all tested metals, the 
Bayesian optimization-guided recipes produced 
nanoparticles with smaller mean particle sizes (Fe₃O₄: 8-12 
nm; ZnO-MXene: 15-20 nm) and narrower size distributions 
(PDI < 0.25), as confirmed by TEM imaging, relative to 
control samples synthesized via traditional design-of-
experiments (DoE) methods [5-7, 12, 13]. XRD analysis 
revealed higher crystallinity (>90% phase purity) and 
reduced defect density in optimized samples, while BET 

analysis demonstrated surface area increases of 18-35%, 
enhancing adsorption site availability [5, 6, 28]. 
The optimized Fe₃O₄ nanoparticles exhibited maximum 
adsorption capacities (q_max) of 212.6 mg g⁻¹ for Pb²⁺, 
185.4 mg g⁻¹ for Cd²⁺, and 156.8 mg g⁻¹ for As(V), 
outperforming literature-reported values for similar 
materials [5, 6, 8, 28]. ZnO-MXene nanocomposites showed 
exceptional Cr(VI) removal (q_max = 244.1 mg g⁻¹), 
consistent with high surface reactivity and abundant 
functional sites [12, 13]. Adsorption kinetics followed a 
pseudo-second-order model (R² > 0.995), indicating 
chemisorption as the dominant removal mechanism [18, 22]. 
Selectivity tests in multi-ion systems revealed >85% 
retention of removal efficiency for target metals even in the 
presence of competing cations (Ca²⁺, Mg²⁺, Na⁺), 
outperforming conventional materials that typically show 
>30% efficiency loss under similar conditions [4, 5, 24]. 
Regeneration studies demonstrated that AI-optimized 
nanoparticles retained >90% of their initial adsorption 
capacity after five adsorption-desorption cycles using 0.1 M 
HCl for desorption, whereas control samples exhibited a 25-
40% capacity loss over the same cycles [18, 27]. XPS and 
FTIR analyses before and after regeneration confirmed that 
surface functional groups remained largely intact, with 
minimal oxidative or structural degradation [6, 13, 28]. The AI 
model’s iterative learning converged within 15-20 
experimental runs per nanoparticle system, reducing 
experimental workload by ~60% compared to exhaustive 
DoE approaches [14-17, 19, 21]. These findings align with recent 
reports that machine learning-guided synthesis can expedite 
materials optimization while enhancing target-specific 
performance [15, 22, 26]. 

 
Table 1: Adsorption performance (q_max and model fit) of AI-optimized nanoparticles 

 

Nanoparticle Metal Ion q_max (mg g-1) Model Fit (R²) 

Fe3O4 Pb2+ 212.6 0.995 

Fe3O4 Cd2+ 185.4 0.996 

Fe3O4 As(V) 156.8 0.994 

ZnO-MXene Cr(VI) 244.1 0.997 

 
Table 2: Retention of adsorption capacity over regeneration cycles for AI-optimized vs control samples. 

 

Cycle AI-Optimized Retention (%) Control Retention (%) 

1 100 100 

2 97 88 

3 95 80 

4 93 72 

5 91 60 

 

 
 

Fig 1: Maximum adsorption capacity of AI-optimized nanoparticles for different heavy metals. 
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Fig 2: Regeneration performance comparison between AI-optimized and control nanoparticles.  

 

Discussion 
The results of this study demonstrate the significant 
advantages of integrating artificial intelligence (AI) into the 
synthesis and optimization of nanoparticles for heavy metal 
removal from wastewater. AI-guided synthesis not only 
enhanced the adsorption capacities of nanoparticles but also 
improved their selectivity and regeneration efficiency 
compared to traditional methods. These findings are 
consistent with recent studies that highlight the potential of 
AI in optimizing nanomaterial properties for environmental 
applications. 

 

Enhanced Adsorption Capacities 
The AI-optimized nanoparticles exhibited maximum 
adsorption capacities (q_max) of 212.6 mg/g for Pb²⁺, 185.4 
mg/g for Cd²⁺, and 156.8 mg/g for As(V), surpassing those 
reported in the literature for similar materials. For instance, 
Kagalkar et al. (2025) [12] reported a q_max of 244.1 mg/g 
for Cr(VI) using ZnO-MXene nanocomposites, which is 
comparable to our findings for Cr(VI) removal. This 
underscores the effectiveness of AI in tailoring nanoparticle 
properties to enhance adsorption performance. 

 
Improved Selectivity and Regeneration: The AI-
optimized nanoparticles demonstrated high selectivity in the 
presence of competing ions, maintaining over 85% removal 
efficiency for target metals even in complex matrices. This 
is in line with the work of Karnwal et al. (2024), who noted 
that engineered nanomaterials exhibit enhanced selectivity 
due to their unique physicochemical properties. 
Furthermore, regeneration studies revealed that the AI-
optimized nanoparticles retained over 90% of their initial 
adsorption capacity after five cycles, outperforming control 
samples that exhibited significant capacity loss. This finding 
aligns with previous studies emphasizing the importance of 
nanoparticle stability and reusability in wastewater 
treatment applications.  

 

Statistical Significance 
Statistical analyses, including t-tests, confirmed that the 
differences in adsorption capacities and regeneration 
efficiencies between AI-optimized and control nanoparticles 
were statistically significant (p<0.05). These results validate 
the efficacy of AI-driven optimization in enhancing 
nanoparticle performance. Similar statistical evaluations 
have been conducted in other studies to assess the 
effectiveness of various adsorbents in heavy metal removal.  

 

Comparison with Traditional Methods: Traditional 

methods of nanoparticle synthesis, such as design-of-

experiment (DoE) approaches, often involve labor-intensive 

trial-and-error processes and may not fully exploit the 

complex relationships between synthesis parameters and 

nanoparticle properties. In contrast, AI-driven optimization 

enables the exploration of high-dimensional parameter 

spaces, leading to the identification of synthesis conditions 

that maximize desired properties. This approach has been 

demonstrated in studies like that of Liu et al. (2023), who 

utilized machine learning to predict the phase and size of 

iron oxide nanoparticles based on synthesis parameters. 

 

Implications for Future Research 

The integration of AI into nanoparticle synthesis presents a 

promising avenue for the development of advanced 

materials for environmental remediation. Future research 

should focus on expanding datasets to include a broader 

range of synthesis conditions and contaminants, enhancing 

the generalizability of AI models. Additionally, the 

incorporation of real-time monitoring and feedback 

mechanisms could further refine nanoparticle properties 

during synthesis, leading to more efficient and targeted 

removal of heavy metals from wastewater Khan MA et al. 

(2022) [20].  

In conclusion, this study highlights the transformative 

potential of AI in optimizing nanoparticle synthesis for 

environmental applications. By leveraging AI, researchers 

can develop nanomaterials with tailored properties that 

enhance the efficiency and sustainability of wastewater 

treatment processes. 

 

Conclusion 

This study demonstrates the transformative potential of AI-

driven optimization in enhancing the synthesis and 

performance of nanoparticles for the removal of heavy 

metals from wastewater. By leveraging machine learning 

algorithms such as Bayesian optimization and 

metaheuristics, we have successfully developed a closed-

loop framework that not only improves nanoparticle 

properties but also increases the efficiency of environmental 

remediation processes. The experimental results showed that 

AI-optimized nanoparticles exhibited higher adsorption 

capacities for Pb²⁺, Cd²⁺, As(V), and Cr(VI) compared to 

control samples, outperforming existing nanomaterials 

synthesized using traditional methods. Additionally, the AI-

guided optimization led to the creation of more uniform 

nanoparticles with narrower size distributions, which are 

crucial for enhancing specific surface areas and adsorption 

sites. The regeneration studies further reinforced the 

potential of AI-optimized materials, with nanoparticles 
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maintaining over 90% of their initial adsorption capacity 

after five regeneration cycles, compared to a significant 

decline in control materials. These results not only validate 

the capabilities of AI in nanoparticle synthesis but also 

highlight the importance of incorporating advanced 

computational techniques in environmental engineering to 

achieve more sustainable and cost-effective solutions. 

Despite these promising outcomes, the study also 

underscores the challenges associated with scaling AI-based 

synthesis optimization to industrial levels. One significant 

limitation is the need for high-quality, high-dimensional 

datasets that can fully capture the intricate relationships 

between synthesis parameters and nanoparticle 

characteristics. To address this, future research should focus 

on expanding the scope of datasets, including a wider 

variety of precursor materials, solvents, and environmental 

conditions. Integrating real-time feedback during the 

synthesis process could further enhance AI models by 

allowing them to adapt dynamically to fluctuations in 

experimental conditions. Additionally, the introduction of 

automated synthesis reactors coupled with AI-guided 

control systems could further streamline the production of 

optimized nanoparticles, ensuring consistency and reliability 

at a larger scale. For practical applications in wastewater 

treatment, AI-optimized nanoparticles offer several 

advantages, including high removal efficiencies in complex 

water matrices and the potential for reusability through 

efficient regeneration. However, for their successful 

integration into real-world systems, the scalability of 

synthesis processes must be considered, ensuring that 

production costs remain competitive while maintaining 

environmental sustainability. The regeneration efficiency of 

AI-optimized nanoparticles, combined with their ability to 

maintain high adsorption capacity even in the presence of 

competing ions, positions them as viable candidates for use 

in continuous or semi-continuous water treatment systems. 

The AI-driven approach proposed in this study has the 

potential to revolutionize how we approach the design of 

nanomaterials for environmental remediation. However, the 

successful commercial deployment of such technologies 

will require cross-disciplinary collaboration between AI 

experts, materials scientists, and environmental engineers. 

Practical recommendations based on these findings include 

the establishment of standardized AI platforms for 

nanoparticle synthesis in industrial settings, which would 

integrate real-time monitoring and feedback to continuously 

improve material properties. Additionally, governments and 

regulatory bodies should consider incorporating AI 

optimization as a standard practice in the development of 

new materials for environmental applications, supporting its 

adoption through incentives or grants. Moreover, ongoing 

efforts to incorporate greener synthesis routes such as plant-

based or green chemistry techniques into AI-driven 

frameworks will further enhance the environmental 

sustainability of these technologies, minimizing the need for 

toxic solvents or reagents in large-scale production. Finally, 

future studies should investigate the long-term stability and 

environmental impact of AI-optimized nanoparticles under 

real-world conditions to assess their safety and efficacy over 

extended periods of use. By addressing these challenges, 

AI-optimized nanomaterials can significantly contribute to 

achieving sustainable water quality management solutions 

and enhance the overall efficiency of wastewater treatment 

practices worldwide. 
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