
~ 60 ~

International Journal of Computing and Artificial Intelligence 2025; 6(2): 60-63

E-ISSN: 2707-658X

P-ISSN: 2707-6571

www.computersciencejournals.

com/ijcai

IJCAI 2025; 6(2): 60-63

Received: 12-05-2025

Accepted: 17-06-2025

Topalidi Anna

Specialist Degree, Moscow

State University of Geodesy

and Cartography, Moscow,

Russia

Corresponding Author:

Topalidi Anna

Specialist degree, Moscow

State University of Geodesy

and Cartography, Moscow,

Russia

Monitoring and visualization of web application

performance metrics: Using Prometheus, Grafana,

and new relic in ruby projects

Topalidi Anna

DOI: https://www.doi.org/10.33545/27076571.2025.v6.i2a.177

Abstract
This article examines the practice of monitoring performance metrics in web applications developed

using the Ruby programming language. It explores key approaches to organizing the collection,

visualization, and interpretation of metrics with the goal of enhancing system stability and

observability. Special attention is given to the tools Prometheus, Grafana, and New Relic, their

architectural features, integration capabilities with Ruby applications, and differences in data

representation models. The study also investigates alerting configuration scenarios and event handling

as the final stages in building an effective monitoring system. Methods for alert definition, notification

delivery mechanisms, and approaches to automating anomaly response are analyzed.

Keywords: Monitoring, performance metrics, visualization, alerting, event handling, Prometheus,

Grafana, New Relic, Ruby

Introduction

In a situation that is dominated by high competition and rapidly growing user expectations, it

is imperative that web applications deliver consistent and up to standard performance. Even

minimal response time delays can lead to reduced client satisfaction and cause financial

losses for organizations. To tackle these problems, it is important to monitor key

performance indicators continuously, evaluate system functionality, and take immediate

corrective actions upon observing any anomalies. In this regard, active performance

monitoring has become a key determinant in the maintenance and development of current

web services.

In practice, monitoring encompasses not only the collection and storage of metrics, but also

their visualization, alert configuration, and automated event handling. Within the Ruby

development ecosystem, tools such as Prometheus, Grafana, and New Relic are increasingly

adopted. Each provides distinct approaches to application observability, scalable monitoring,

and accessible presentation of performance data. When implemented appropriately, these

tools enable DevOps teams and developers to identify bottlenecks, anticipate load patterns,

and ensure reliable system operation around the clock. The goal of this research is to analyze

the approaches to monitoring performance metrics in web applications using Prometheus,

Grafana, and New Relic, with a particular focus on data visualization, alert configuration,

and event handling in Ruby-based projects.

Main part. Approaches to monitoring web application performance metrics

The maintenance of peak performance requires a wide approach to the gathering, analysis,

and interpretation of various data. Functionality monitoring is an essential foundation for

guiding technical decision-making, detecting real-time anomalies, and planning for future

scalability. The assessment of an application includes not just its inherent attributes, but also

extrinsic metrics related to user interaction and the general health of the underlying

infrastructure. System-level metrics reflect the state of the host environment and include

CPU utilization, memory consumption, number of open file descriptors, and network

throughput (table 1).

https://www.computersciencejournals.com/ijcai
https://www.computersciencejournals.com/ijcai
https://www.doi.org/10.33545/27076571.2025.v6.i2a.177

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 61 ~

Table 1: Common performance metrics in web applications [1-3]

Metric Description Example threshold Equivalent metric in New Relic

http_request_duration Time taken to process an HTTP request ≤ 200 ms Response time

http_requests_total Total number of HTTP requests received Depends on traffic Throughput (requests per minute)

memory_usage_bytes Amount of memory used by the application ≤ 70% of available Memory usage

error_rate Proportion of requests resulting in errors < 1% Error rate

db_query_duration Average duration of database queries ≤ 100 ms Database query time

Within the Ruby ecosystem, the Prometheus exporter tool

plays a significant role by enabling the export of application

metrics in a format compatible with modern monitoring

systems. When using the Rails framework, it is common

practice to collect custom metrics directly from middleware

components or background workers. Examples include

measuring view rendering times, SQL query durations, or

the behavior of background job processors. In large-scale

applications, distributed tracing systems are often employed

alongside metrics to visualize the relationships between

requests, which is particularly valuable in microservice

architectures.

A core aspect of any monitoring system is its metric

collection strategy. The two most widely adopted models

are push and pull. In the push model, agents embedded

within the application or host actively send metrics to an

external monitoring service. A notable example is New

Relic, where the Ruby agent aggregates and transmits

performance data to a cloud-based platform. In contrast, the

pull model involves the monitoring system, such as

Prometheus, periodically querying predefined endpoints to

retrieve the latest metrics [4]. Each approach has distinct

advantages: push is generally easier to integrate into cloud

and hybrid environments, while pull offers greater

transparency and control in self-managed or on-premise

deployments. A typical monitoring architecture for Ruby-

based applications is adapted from publicly available

Prometheus-related design patterns (fig. 1).

Fig 1: Monitoring architecture for a Ruby application [5]

Effective monitoring is not possible without a clear

understanding of threshold values for each metric. Absolute

metric values alone do not always provide sufficient insight.

It is crucial to consider trends over time as well as the

interrelationships among different metrics. An increase in

latency, for instance, might be attributed to a surge in user

traffic, degradation of an external API, or internal memory

leaks. The primary function of monitoring is to identify such

anomalies early and guide the diagnostic process.

An essential component of modern monitoring systems is

alert configuration; however, detailed implementations of

alerting and event handling are discussed in a separate

chapter. It is worth noting here that a robust monitoring

system must support the definition of flexible alerting

conditions and maintain a history of observations for

retrospective analysis.

Performance monitoring of web applications emerges as a

multilayered process that encompasses data collection,

metric interpretation, and alignment with business logic. In

Ruby-based systems, this requires a well-designed

monitoring architecture and flexible instrumentation

strategy that captures both application behavior and the state

of the surrounding infrastructure.

Monitoring and visualization tools: Prometheus,

Grafana, and New Relic

Modern monitoring tools for web products go far beyond

simple metric gathering, with full data visualization

capabilities and analytical processes. The choice of a

supervision tool depends on several factors, along with the

size of the project, the type of infrastructure, and the level of

analysis needed. Sought-after solutions in Ruby applications

are Grafana, Prometheus, and New Relic. These tools have

different approaches to data handling and operate at

different levels of abstraction.

Grafana does more than the typical role of being just

another metric aggregation dashboard; it is a powerful

visualization tool with the ability to connect with many data

sources, such as but not restricted to, Prometheus, InfluxDB,

and Elasticsearch. The platform allows one to build

dashboards with graphs, heatmaps, numerical panels, and

time-series displays, all programmatically customizable to

accommodate specific monitoring needs (fig. 2).

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 62 ~

Fig 2: Example of a Grafana dashboard querying Prometheus metrics [6]

For Ruby-based applications, Grafana’s ability to segment

visualizations by layer: from basic request statistics to the

behavior of background jobs and microservice components,

is particularly valuable. Dashboards in Grafana can be

configured to highlight anomalies, resource utilization

levels, and temporary spikes in user activity. Besides its

visualization capabilities, Grafana supports alert creation

directly from graph panels.

Prometheus is a high-performance time-series database

designed for autonomy and independence from external

storage systems. It was developed with automation in mind

and operates using a pull-based model, where metrics are

collected by querying predefined endpoints. One of its

primary advantages is full data transparency: all stored

metrics are queryable using PromQL, a powerful and

flexible query language that supports aggregation, filtering,

and correlation [7].

New Relic is a cloud-based observability platform that

prioritizes ease of use and rapid deployment. Unlike

Prometheus and Grafana, which require local infrastructure

setup and ongoing maintenance, New Relic is delivered as a

Software-as-a-service solution and integrates with

applications through the installation of a Ruby agent. This

agent automatically collects key metrics, transaction traces,

dependency data, and SQL performance information.

Visualization in New Relic is designed with practical use

cases in mind; the interface provides preconfigured

dashboards that display latency, error rates, throughput, and

system load, with intuitive filtering by time window,

service, or environment. Another benefit is the availability

of tracing and performance monitoring capabilities inherent

to the method, allowing developers to identify slow or

problematic areas of code without the need for manual

instrumentation or the setup of exporters.

Alert configuration and event handling: implementation

of practical scenarios

The production of a strong monitoring system requires more

than just the collection and display of data. To enable timely

responses to anomalies and reduce the effect of system

failure on end users, it is essential to include thorough

alerting capabilities in addition to clearly defined event-

management procedures. Notifying capabilities are the

essential bridge between passive system monitoring and

active problem resolution. This process converts raw

numerical data into useful notifications that signal drops in

performance, operational anomalies, or violations of

expected system behavior. Notably, a well-designed alerting

system must have the ability to differentiate between

important events and minor fluctuations, thus avoiding

warning fatigue and the deluge of useless information.

The development of alerting rules typically begins with

defining thresholds and trigger conditions. These thresholds

are not always static; in many cases, dynamic models that

compare current values with historical baselines or moving

averages are preferable. A sudden increase in response time

under normal load conditions may be a more significant

indicator of a problem than simply exceeding a predefined

limit. Contextual awareness is also essential, since

acceptable metric values can vary depending on time of day,

environment type (production vs. staging), or expected

seasonal traffic. As a result, mature monitoring systems

often rely on relative changes and composite conditions

involving multiple metrics

Alerts are defined in the context of Prometheus by the

PromQL query language, which defines a certain level of

configuration. Alerts involve an expression, the specified

evaluation time, and a set of annotation items that provide

context for the observed condition. Once an alert is

triggered, it is forwarded to Alertmanager, which handles

notification routing and suppression logic. Alertmanager

supports grouping similar alerts, reducing redundancy in

notifications, suppressing lower-priority alerts in the

presence of more critical ones, and defining silence periods

during which notifications are withheld [8]. These features

are particularly valuable during planned maintenance

windows or nighttime hours, when certain anomalies may

be expected and should not generate unnecessary alerts.

Response strategies to alerts warrant particular attention.

These may be manual, automated, or hybrid in nature. In

manual response scenarios, notifications are delivered to

designated personnel who then assess the situation and take

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 63 ~

corrective action. This procedure is suitable for mission-

critical systems where minimizing false positives is a

priority. Automated responses are appropriate when

predefined remediation workflows can be executed. This

can include restarting a service, switching to a standby node,

scaling out background workers, or triggering a recovery

script. Such actions are especially effective in scalable

environments like Kubernetes, where infrastructure can be

managed declaratively and linked to the alerting system via

API-driven automation.

Implementing a complete observability pipeline, ranging

from metric collection to alerting, event generation, and

response, substantially increases the resilience of web

applications alleviates operational burden on engineering

teams. However, it is important to recognize that alerting is

not a static system. It requires continuous refinement, rule

revision, and adaptation to evolving operational conditions.

Upgrades to application libraries, changes in system

architecture, or shifts in user behavior can render previously

defined thresholds obsolete and trigger a surge of false

positives. As a result, effective alert management

necessitates regular audits and close alignment with both

development and operations workflows.

In this light, alert configuration and the design of event

response strategies are integral to any comprehensive

monitoring system. They transform passive observation into

active reliability engineering, enabling teams to respond

swiftly and appropriately to emerging threats. In the context

of Ruby-based projects, the use of tools such as

Alertmanager, Grafana Alerting, and New Relic Policies

facilitates the customization of monitoring strategies to suit

real-world operational environments and ensures visibility

and control across all layers of the application architecture.

Conclusion

The measurement of performance metrics is a fundamental

element in delivering the stability and predictability of web

applications. Due to mounting system loads and

architectural complexities, it is of paramount importance to

correctly acquire and store data. It is also significant to

perform meaningful analysis and effectively visualize the

data. Grafana, Prometheus and New Relic represent

different approaches to observability, ranging from highly

customizable, infrastructure-level solutions to efficient,

automated solutions with ease of setup as the prime focus.

The choice of the particular tool would largely depend on

the project's architectural design, the team's proficiency, and

the goals the system would need to meet within the firm.

A good monitoring system consists of multiple

interdependent elements: systematically structured metric

retrieval, advanced data visualization, accurate alerting

configuration, and automated remedial actions. Together,

these elements support not just passive observation, but

active engagement with the system, enabling teams to

reduce risk and maintain high levels of reliability. In

practice, the integration of monitoring into day-to-day

development and operations significantly enhances the

quality of technical decision-making and accelerates

management response in the face of incidents.

References

1. Sidorov D, Kuznetcov I, Dudak A. Asynchronous

programming for improving web application

performance. ISJ Theoretical & Applied Science.

2024;138(10):197-201.

DOI: 10.15863/tas.2024.10.138.23. EDN: VUUJRS.

2. Instrumentation. Prometheus.

https://prometheus.io/docs/practices/instrumentation/

(accessed: 12.05.2025).

3. Thresholds. Grafana.

https://grafana.com/docs/k6/latest/using-k6/thresholds/

(accessed: 13.05.2025).

4. Singh J, Ghai K. Comparing New Relic with other

Performance Monitoring Tools. 2022 10th International

Conference on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions). IEEE.

2022:1-5. DOI: 10.1109/ICRITO56286.2022.9964706.

5. Overview. Prometheus.

https://prometheus.io/docs/introduction/overview/

(accessed: 16.05.2025).

6. Grafana support for Prometheus. Prometheus. Available

from: https://prometheus.io/docs/visualization/grafana/

(accessed: 18.05.2025).

7. Aung T, Zaw HT, Maw AH, Mon MT. Comprehensive

Analysis: Monitoring Apache Kafka with Grafana,

JMX Exporter, and Prometheus. 2024 5th International

Conference on Advanced Information Technologies.

IEEE. 2024:1-6. DOI:

10.1109/ICAIT65209.2024.10754944.

8. Yuan C, Zhang W, Ma T, Yue M, Wang PP. Design

and implementation of accelerator control monitoring

system. Nuclear Science and Techniques. 2023;34(56).

DOI: 10.1007/s41365-023-01209-z. EDN: UMNOII.

https://www.computersciencejournals.com/ijcai

