
~ 37 ~

International Journal of Computing and Artificial Intelligence 2025; 6(2): 37-59

E-ISSN: 2707-658X

P-ISSN: 2707-6571

Impact Factor (RJIF): 5.57

www.computersciencejournals.

com/ijcai

IJCAI 2025; 6(2): 37-59

Received: 10-05-2025

Accepted: 15-06-2025

Mohammad Shihab Ahmed

Department of Computer

Science and Mathematics

College, Tikrit University,

Tikrit, Iraq

Maha Safar Abdulmajed

Department of Laboratory

Sciences, College of Pharmacy,

University of Tikrit, Tikrit,

Iraq

Corresponding Author:

Mohammad Shihab Ahmed

Department of Computer

Science and Mathematics

College, Tikrit University,

Tikrit, Iraq

Sentiment analysis of social media data using multiple

machine learning models: A case study on public

opinion trends

Mohammad Shihab Ahmed and Maha Safar Abdulmajed

DOI: https://www.doi.org/10.33545/27076571.2025.v6.i2a.176

Abstract
Sentiment analysis is an important part of both data mining and natural language processing (NLP),

which defines the extraction and analysis of public opinion from public discourse and social media,

allowing researchers to understand community attitudes and perspectives during those moments in

time, such as during a political election. The objective of this study was to perform an analysis of

sentiment based on four machine learning models including: Naive Bayes, a feedforward neural

network, Support Vector Machine (SVM) and Random Forest. Using a generated dataset of 10,000

tweets about a fictitious 2025 global political election, we performed the sentiment analysis using the

four models mentioned, along with explanations of how this was done; including the data simulation,

noise preprocessing, TF-IDF feature extraction, and training of the machine learning models using 5-

fold cross validated modelling methods involving Python. Concerning the results: the accuracy of the

models produced Naive Bayes at 83.1%, feedforward neural network at 81.2%, support vector machine

at 83.1%, and random forest at 81.5%. The results of the analysis were supported with supportive

measures of all metrics available i.e. precision, recall, F1-scores, confusion matrices, ROC curves,

precision-recall curves and feature importance.

The sentiment distribution reveals a polarization: 45% positive tweets, 33% negative, and 22% neutral.

Naive Bayes is very good for vast-domain analysis, whereas the neural networks promise capturing

nuanced information given that computational optimization is achieved. SVM is consistent, while

Random Forest is balanced in classification and could provide some information about features. There

are eight visualizations integrated into the study framework as PNG images (e.g.,

confusion_matrices.png, wordcloud_positive.png): confusion matrices, ROC curves, precision-recall

curves, word clouds, sentiment distribution, and feature importance, among others. This detailed and

fully reproducible framework will support academic research and real-world applications to understand

public opinion in the context of the 2025 election.

Keywords: Sentiment analysis, machine learning, social media, political election, natural language

processing

Introduction
The exponential growth in social media platforms-intensified by Twitter, which, in an

estimate, moves more than 500 million tweets daily into the atmosphere-has, in essence,

altered the space of public discourse and positioned these digital ecosystems as arguably the

biggest vault of real-time sentiments about society. This very transformation has caused

social media to really become an act of analysis of public opinion, especially during nail-

biting events like political elections where bigger-than-life issues regarding side-by-side

aggregation and interpretation of opinions can be discussed in terms of voter preferences,

political trends, campaign effectiveness, and, in the barest sense, the spirits of the people

with a level of micro-detail and immediacy hitherto impossible. Twitter serves as the largest

sample for the public expression of some very raw integrated thoughts and opinions, with

sprinkles of emotion-a few slang terms, some emojis, and possibly a vaudeville act or two at

280 characters-makes it an extremely rich yet very challenging source for sentiment analysis.

Sentiment analysis, a core branch under data mining and NLP, aims to classify textual data

into categories such as positive, negative, or neutral so as to understand emotional tone

prevailing among the public and collective attitudes that various stakeholders, such as

researchers, policymakers, campaign strategicians, and data scientists, use as their hopeful

eye to watch, interpret, and forecast societal ramifications.

https://www.computersciencejournals.com/ijcai
https://www.computersciencejournals.com/ijcai
https://www.doi.org/10.33545/27076571.2025.v6.i2a.176

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 38 ~

This study is thus oriented toward exploring the

performance of four applied machine learning methods in

the sentiment analysis of a simulated 10,000-tweet dataset

related to a fictitious 2025 global political elections, an ad

hoc creation meant to represent the rich, multifaceted, and

often disorderly online discourse that usually accompanies

worldwide events. The models were so selected on the basis

of their very differing theoretic backgrounds and strengths

in practice: Naive Bayes, reputed for its computational

efficiency and resilience to noisy unstructured data (Medhat

et al., 2014) [9], hence an ideal candidate for treatment of the

large-scale irregular text-data generated on social media

platforms; the neural network, to wield the much powerful

deep-learning paradigm to extract complex language

patterns, semantic relationships, and contextual

dependencies (Zhang et al., 2018) [18]; the SVM, well-known

to Cortes and Vapnik (1995) [4] to manage high-dimensional

feature spaces and complicated decision boundaries; and

finally the Random Forest for its stated robustness to non-

linear relationships, reduction of overfitting in an ensemble

learning fashion, and provision of interpretable feature

importance metrics (Breiman, 2001) [3].

The research uses TF-IDF for extraction of the features

which describes how important a word is for a document,

accounted for by its frequency in the document (compared

to its frequency through the entire corpus of documents);

additionally, I applied class weights to account for the slight

class imbalance (i.e., there are 45% of records that are

positive, 33% that are negative, and 22% that are neutral),

which will provide a more complete and equitable analysis

across all three classes of sentiment. Overall, the objectives

of this research are multifarious and lofty:

1. To comprehensively compare Naive Bayes's

capabilities in sentiment classification of noisy social

media data against those of neural network, SVM, and

Random Forest, using the specific results from the code

provided to illustrate their relative benefits and

weaknesses.

2. To evaluate the computational efficiency and

performance trade-offs of these models based on the

execution behavior and output statistics and cross-

validation results of the code, providing insight into the

practical use of the models for real-world applicability.

3. to derive rich, deep, substantive, and actionable insights

from the sentiment distribution in what was said about

the context of public perception and engagement

regarding the 2025 election while also examining how

these could be related to wider societal trends, voter

sentiment and election behavior

4. To provide an extremely ambitious, fully reproducible

Python implementation with high-detail visualizations

as embedded images, sets of detailed tables

summarizing performance measures, and high-level

interpretive discussion of findings, for use in your

thesis and as an inspiration for a thorough exploration

of future research.

The study takes on the following research questions with

specificity and rigor

1. How does Naive Bayes compare in classification

capabilities to the neural network, SVM and Random

Forest when classifying sentiment from noisy social

media data and based on the code's specific results

particularly in regard to accuracy, precision, recall and

F1-scores by all folds?

2. What are the computational and performance tradeoffs

for the models from the perspective of the code in terms

of execution time, resource utilization and the output

from all folds, and how do these differences affect their

applicability to potential use cases?

3. What precise and granular information can be derived

from the sentiment distribution about how the public

feels about the 2025 election with respect to

polarization, how positive, negative and neutral

sentiment is distributed and, what these imply in terms

of wider societal trends?

4. How would the practical application and in particular,

code, tables, and visualizations, be conceived,

structured, expanded, and documented for the best

chance of providing for inclusion in a thesis offering

value in terms of clarity, reproducibility, and academic

rigor?

The paper is highly organized to help the reader follow a

clear and thorough path through these questions. Section 2

reviews the literature, to provide context for the current

study in the broader field of sentiment analysis. Section 3

explains the methodology with code snippets, step-by-step

and theoretical justification for each step. Section 4 details

the practical application of that methodology, and references

the Appendix with full code listings. Section 5 presents the

results, which includes tables as well as embedded

visualizations. Section 6 offers a thorough discussion of the

findings, limitations, and implications. Section 7 presents

future directions and recommendations, and the Appendix

contains the full code listings, and additional technical

information, for full reproducibility.

2. Related Work
In the past two decades, sentiment analysis has grown and

moved into the interdisciplinary domains of data mining and

natural language processing. Pang et al. (2002) [12] first

introduced Naive Bayes classifiers in a sentiment

classification setting, obtaining great accuracy with fairly

simple unigram features on a set of movie reviews. This

approach placed Naive Bayes as a benchmark due to its

simplicity, speed, and reasonable accuracy even when data

were sparse. The advantages of its computational efficiency

and the underlying probabilistic framework, which

computes posterior probabilities through Bayes' theorem,

were summarized in Medhat et al. (2014) [9] and stressed as

reasons to consider Naive Bayes classification. Going to its

ability to handle noisy and unstructured data is another

reason that makes it very suitable for social media text,

where 'proper' linguistic structures are frequently absent and

highly unorthodox methods of writing abound. Go et al.

(2009) [5] took the work one step further and looked at the

problem of Twitter-based sentiment classification using

distant supervision through emoticons, and in doing so, they

generated the strongest reported numbers, an accuracy of

83%, showing indeed that Naive Bayes works very well in

real-world messy settings like social media.

Deep learning brought increasingly sophisticated models.

Zhang et al. have reviewed CNNs and LSTMs, which are

good at capturing contextual or long-range dependencies

(2018) [18]. However, these models require heavy

computational resources, a lot of training data, and

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 39 ~

extensive hyper parameter tuning, thus less fit for rapid

analysis in a resource-constrained environment. Kouloumpis

et al. (2011) [7] showed with Twitter data that lexicon-based

features, such as sentiment lexicons, provide a significant

improvement in classification performance. This is a

reflection of the additional context and clues that sentiment

offers, which we attempted to account for during

preprocessing and feature extraction, particularly with the

treatment of emojis and stop words that still communicate

sentiment. Yang and Wang (2019) [17] produced an efficient

and accurate hybrid Naive Bayes-neural network model, and

inspired this work to utilize class weights to support

balancing the dataset.

Feature extraction approaches have changed too. Pennington

et al. (2014) [13] presented GloVe word embedding to exploit

its semantic and contextual similarities, yielding a richer

representation of text than the traditional bag-of-words

feature extraction. Agarwal et al. (2011) [1] recognized that

social media is rich with non-textual features like emojis

and hashtags and emphasized that these often have an

important emotional and contextual meaning in the

sentiment analysis of Twitter, which aligns with the decision

in our study to convert emojis to text descriptions in

preprocessing emphasizing these capturing these elements.

Liu (2012) [8] and Hutto and Gilbert (2014) [6] composed the

VADER lexicon targeting social media to provide increased

accuracy with sentiment-specific scores and rule-based

modifications.

Recent research such as Wang et al. (2021) [15] on real-time

sentiment analysis for crisis management on Twitter and

Alharbi et al. (2020) [2] on multilingual Twitter data points

to supporting preprocessing, combinations of features, and

data-driven and adaptive models to tackle linguistic

variation, cultural variation and temporal change. In this

study we tackle these identified problems by simulating a

noisy dataset, using TF-IDF with class balancing, and

running multiple models (Naive Bayes, neural network,

SVM, and Random Forest) on a simulated Twitter dataset

composed of 10,000 tweets. This paper extends the

pioneering work of Socher et al. (2013) [14] (recursive neural

networks) and Mikolov et al. (2013) [10] (Word2Vec) by

providing a complete comparison in concern for the

electoral politics surrounding its subject with tables, plots

and in depth analysis.

3. Methodology

3.1 Data Collection

The dataset for this study consists of 10,000 simulated

tweets about a fictional global political election in 2025.

The tweets were designed to closely emulate the language

variation, noise, sentiment variation, and context complexity

of real Twitter data released during electoral events for

politicians and elections globally. The simulation was run

with a random seed of 42 for reproducibility. Sentiment

labels were assigned using a distribution which included a

45% positive sentiment, 33% negative sentiment, and 22%

neutral sentiment. This distribution was purposefully created

to closely mirror the extreme polarization typically observed

in global electoral communications which can be broadly

classified as either strong support or strong opposition,

coupled with some neutral/indifferent or disengaged

constituents.

This distribution relies on a complex randomization process

that picks phrases from predetermined sets for a given

sentiment class so that the generated tweets can correspond

to an emotional tone and linguistic style peculiar to each

class. For example, the positive tweets will contain

expressions such as “great effort,” “amazing work,” and

“hopeful future” to elicit optimism. In contrast, negative

tweets will incorporate expressions such as “great failure,”

“failed policy,” and “disappointing result,” which express

criticism. Neutral tweets are made up of phrases such as

“election update,” “voting process,” and “political debate,”

having a factual or neutral tone, similar to a news update or

objective commentary during elections.

In this text, linguistically complex, but realistic phrases have

been incorporated. These ambiguous phrases (e.g.,

"interesting choice") and transitional outcome (e.g.,

"unexpected outcome") create some ambiguity for

classification purposes that is, their use is dependent on their

context. In order to simulate irony, which is quite common

on social media, ironic phrases (e.g., "great job not";

"amazing fail") are included. The probability distribution to

select a phrase was: 70% for sentiment-specific phrases

(0.14 for each of five phrases), 15% for ambiguous phrases

(0.025 for each of six phrases), and 15% for sarcastic

phrases (0.03 for each of five phrases). Hence, the dataset is

varied and challenging to perform sentiment classification.

np.random.seed(42) n_tweets = 10000 sentiments =

np.random.choice(['positive', 'negative', 'neutral'],

size=n_tweets, p=[0.45, 0.33, 0.22]) # Define phrases for

each sentiment positive_phrases = ["great effort", "amazing

work", "hopeful future"] #... (see Appendix A for full code)

tweets = [] for i, sentiment in enumerate(sentiments): if

sentiment == 'positive': phrase =

np.random.choice(positive_phrases + ambiguous_phrases +

sarcastic_phrases, p=[0.14]*5 + [0.025]*6 + [0.03]*5) tweet

= f"Tweet {i} about election: {phrase}!" #... (similar for

negative and neutral)

To simulate a noisy environment and impart a natural flavor

of its informal and chaotic nature, a noise insertion goes on

through the add_noise function. This function may insert

additional linguistic elements with a 90% chance for

conversational noise words such as “...”, “??”, “!!!”, “meh”,

“umm”, “lol”, “idk”, “not sure”, “maybe good”, “kinda

bad”, “pretty okay”, “so so”, and “random stuff.” With a

50% chance, they may also add ambiguous words such as

“really”, “actually”, “possibly”, “somewhat”, “very”, “not

bad”, “quite good”, and “whatever”. Such noise words

emulate the casual tone, emotional expression, and linguistic

ambiguity that are often expressed in Twitter data and

provide ample hurdles for the sentiment classification

research in terms of sorting out actual sentiment from

conversational fillers, or really appreciating the impact of

ambiguous modifiers. Appendix A contains an

implementation of the add_noise function with full phrase

lists and simulation logic.

Now, as a Data Frame in Pandas, this resultant data set is a

controlled, yet representative, proxy for some real Twitter

data. With 4,500 positive, 3,300 negative, and 2,200 neutral

tweets, this ever-potent data allows a rigorous testing of the

machine learning models under conditions that emulate

closely the electoral discourse in a digital, global timeframe.

3.2 Data Preprocessing: The preprocessing pipeline

represents the first stage of creating a simulated dataset

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 40 ~

composed of fed Tweets text prepared for sentiment

analysis, and in consideration of the noise, linguistic

diversity, and contextual variety in social media text,

characterized by language and other conventions common to

Twitter (e.g. informal language, emojis, slang,

abbreviations, punctuation, extra characters). The noise

reduction and the cleaning steps of preprocessing are

implemented via the preprocess text function of the supplied

Python code, which applies stepwise processing steps to

arrive at a clean, standardized, and sentiment-preserving

corpus with which to extract features and learn a model

with, while leaving intact the details of emotional and

contextual sentiment relevance. Therefore, the process of

preprocessing is designed to remove no member of the text

corpus or sentiment relevance while filtering out as much

irrelevant noise as possible. The order of the preprocessing

pipeline objectives where authenticated meaning quality is

best and the least affected in obtaining a sentiment

preserving final text corpus. The steps in this pipeline are as

follows:

 Conversion of Emojis: Emojis are popular in social

media and often serve as strong indicators of emotional

tone (smile for happiness, Angry for anger); these

emojis are demojize into their textual descriptions using

the emoji library (Smile gets converted to "smiling

face", Angry gets converted to "angry face"). This step

thus preserves the emotional and contextual cues

something that is originally conveyed by a visual

symbol and transforms it into a text format recognized

by text-based machine learning models, thus greatly

assisting these models in capturing sentimental cues

given in no textual form.

 Cleaning of Text: The text remains cleaned to remove

those elements that do not contribute to sentiment or

emotional content, such as URLs (http://example.com),

user mentions (@username), hashtags (#Election2025),

numbers, and special characters (!,?, $, %), using a very

comprehensive regular expression:

re.sub(r'http\S+|@\w+|#\w+|[^\w\s]|\d', '', text.lower()).

The text is also converted to lowercase to facilitate

uniformity throughout the dataset thereby reducing the

issues that occur due to case sensitivity that sometimes

may lead to the presence of duplicate features (e.g.,

"Great" and "great" being treated as distinct words) and

aids in making the feature extraction process.

 Tokenization: After cleaning, the text is split into

separate words or tokens by the word_tokenize method

from NLTK. This module uses a pre-trained tokenizer

to split a text into meaningful units based on whitespace

and punctuation. Here, each tweet is split into all of its

constituent elements; for example, “tweet great effort

lol” becomes [“tweet”, “great”, “effort”, “lol”]. This

step enables further linguistic processing, as it provides

a more granular representation of the text to work with

in analyses at the word level.

 Stop Word Removal: Common English words deemed

too general to carry any sentiment information, such as

“the”, “and”, “is”, “in”, and “a”, were removed using

NLTK’s English stop word list to reduce noise from the

sentiment lexicon and focus on words that are more

likely to have sentiment value. However, to retain

negation and sentiment changes in words necessary for

classifying accurate sentiment, the words “not” and

“no” were not included in the stop word set, thus

allowing phrases such as “not good” and “no support”

to keep their negative sentiment connotations required

for differentiating positive and negative tweets.

 Lemmatization: In order to standardize the vocabulary

representation, avoiding redundancy and ensuring the

model can generalize over the dataset, we apply

lemmatization through WordNetLemmatizer (e.g., from

“running” into “run”, from “better” into “good”, from

“tweets” into “tweet”). Unlike stemming, the process of

lemmatization preserves the linguistic integrity of

words because it is dictionary-based; it outputs valid

English words that possess their proper semantic

meaning. This is thus of particular importance in

sentiment analysis, where the use of words could

drastically affect the interpretation.

After these steps, the processed tokens are rejoined into a

single string for each tweet, creating a clean corpus ready

for feature extraction. A brief example of this preprocessing

function is provided below to illustrate its application:

def preprocess_text(text): text = emoji.demojize(text) text =

re.sub(r'http\S+|@\w+|#\w+|[^\w\s]|\d', '', text.lower())

tokens = word_tokenize(text) stop_words =

set(stopwords.words('english')) - {'not', 'no'} #... (see

Appendix A for full implementation)

For instance, the noisy tweet-"Tweet 0 about election: great

effort!!! lol really"-is transformed to "tweet great effort lol

smiling face really," the clean version with the words of

interest carrying the sentiment (great, effort, smiling face)

and with a few conservative noise terms (lol, really) that

might convey some kind of context, free from special

characters, URLs, or inconsistent casing. This thorough data

preprocessing ensures that later feature extraction and model

training will be performed on data of high quality and

standard, forming a strong foundation for the analytical

results of the study. The preprocessing pipeline thus

removes problems encountered in social media text analysis,

such as duplicate words caused by case variations, emojis

being treated as noise, and sentiment signals cluttered by

irrelevant terms, thereby greatly enhancing the dataset

quality and resulting classification reliability.

3.3 Feature Extraction

In a nutshell, feature extraction is perhaps the most

important step in the sentiment analysis pipeline: it turns the

text, which has been cleaned and preprocessed, into its

numerical counterpart so that it may be fed into machine

learning models. The choice of feature extraction technique

thus stands between the raw textual data and the

mathematical representations in which classification is

conducted. In this experiment, the provided Python code

extracts features using the term-frequency inverse-

document-frequency technique (TF-IDF), implemented

using the scikit-learn library's TfidfVectorizer class-a

popular tool for machine learning in Python. The TF-IDF

method is chosen so that words can be given heavier

importance if they occur more frequently in one document

but less frequently over the entire corpus, thus providing

strong and comprehensible representations of the text with a

focus on local term weighting opposed to global term rarity.

The implementation of the TfidfVectorizer has been

carefully set to find an occasion between computational

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 41 ~

costs and enough representation, limiting the set of features

to 500 terms because of computational limitations and with

an intent of avoiding overfitting, and the range of n-grams

goes only to unigrams-with ngram_range=(1, 1)-meaning

that it will look at individual words and not phrases for

simplicity and interpretability but still concentrating on

those words that are mostly carrying sentiment signals in the

data. TF-IDF score is assigned to each word in each tweet

with two components: the Term Frequency (TF) - that is the

frequency of occurrence of a word within a given tweet; and

Inverse Document Frequency (IDF), which penalizes words

occurring frequently in the whole dataset (e.g., election in

this case) and rewards words which occur seldom but

discriminate the sentiment better (e.g., great effort- positive

sentiment). Mathematically, TF-IDF score of a term t

belonging to document d in corpus D is given by:

TF-IDF(t,d,D)=TF(t,d)×IDF(t,D)

Where;

 TF (t, d) is the term frequency normally taken as the

raw term count of t in Document d, which is then

normalized by the document length with respect to

respect to varying tweet lengths.

 IDF(t,D)=log))+1 is the logarithmic term

where ∣D∣ is the total number of documents (tweets) in

the corpus, while ∣{d∈D:t∈d}∣ is the number of

documents containing the term t, with the 1 added as a

smooth to ensure the IDF does not become zero for

terms that appear in all documents.

The sparse matrix generation gives us X_tfidf of shape

10,000 × 500, i.e., 10,000 tweets and 500 features. The rows

of this matrix correspond to tweets, while the columns are

the words' TF-IDF scores measuring how important each

word is to a specific tweet and providing a sound numerical

representation for a further model training. Below is the

snippet of the feature extraction algorithm, explaining TF-

IDF matrix creation:

vectorizer=TfidfVectorizer(max_features=500,ngram_range

=(1, 1)) X_tfidf = vectorizer.fit_transform(X)

Where X is the cleaned_tweet column in that DataFrame

holding preprocessed tweets. This resulting X_tfidf is a

sparse matrix, most of its entries are zeroes. This is a form

typical for text data, each tweet containing only a small

subset of the vocabulary, while the sparsity is used to

advantage by scikit-learn's implementation for memory and

computational ease. To somewhat alleviate imbalance in the

dataset-45% positive (4,500 tweets), 33% negative (3,300

tweets), and 22% neutral (2,200 tweets)-class weights are

calculated through the compute_class_weight function of

scikit-learn so that the models pay due attention towards the

neutral minority class during the training and thus do not

become biased towards the majority positive class. The

implementation of mapping labels with weights looks as

follows:

label_map = {'positive': 0, 'negative': 1, 'neutral': 2}

y_encoded = np.array([label_map[label] for label in y])

class_weights=compute_class_weight(class_weight='balanc

ed', classes=np.unique(y_encoded), y=y_encoded)

class_weight_dict = {i: weight for i, weight in enumerate

(class_weights)}

Therefore, the computed class weights come into play

during actual learning, wherein greater importance is given

to those classes that have few samples. One good example is

the neutral class, so that the models are put on heavier

punishment when they misclassify a neutral tweet as

compared to the misclassification of either a positive or a

negative one. This helps the promotion of fairness and

consequently helps any model to classify entities better

among all sentiment classes. This hybrid approach

combining TF-IDF feature extraction and class balancing

thus lays down a strong and equitable foundation for further

model training and evaluation, ensuring that numerical

representation of the text reflects both the semantic content

of the document and the distributional characteristics of the

dataset-and tilting the scales toward more accurate and

perhaps less biased sentiment classification.

3.4 Model Training

The training phase sees the application of four machine

learning models—Naive Bayes, feedforward neural

network, Support Vector Machine (SVM), and Random

Forest—on the TF-IDF feature matrix. Each algorithm can

use the class weights that have been computed to counter

the slight class imbalance in the dataset and thus be fairly

evaluated concerning the positive, negative, and neutral

classes. Training was confined within the bounds of 5-fold

cross-validation, as shown in the Python code shared, to

produce estimates of each alphabet's performance that were

more robust, considered generally applicable, and

statistically sufficient over different partitions of data, thus

giving less opportunity to overfit and provide a reasonable

judgement as to how well any given model can theorize

upon unseen data. Cross-validation divides the datset into

five folds; in each of the five iterations, four folds are

selected for training, and the one remaining fold is set aside

for validation or testing. The process is repeated, ensuring

each fold serves as the testing set exactly once. Such an

evaluation facilitates an averaging of the performance

metrics over multiple splits, which indeed alleviates toys

evaluated metrics from single splits and provides a more

stabilized and representative score of the models' real-world

effectiveness. The particulars of the setup and theory behind

the approach, along with the mechanisms for training, are

described for each model in greater detail:



Naive Bayes: Naive Bayes is a model that is part of scikit-

learn's MultinomialNB class. It models data based on the

Naive Bayes theorem which takes the assumption of

conditional independence between features given the class

label. Although this assumption is rarely true, we still get

good results when building a text classification model all

because text data are highly dimensional and sparse. In

other words, it has been shown that you can use a method

that relies on a conditional independence model and end up

with a surprisingly good performing model because for text

data the sparsity (0s) and the dimensionality (number of

features) afforded classification that fits well. The

Multinomial Naive Bayes model (MNB) is primarily

intended for use with discrete data (e.g., count data, word

counts or TF-IDF scores). MNB calculates the posterior

probability of each class given the tweet features using

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 42 ~

Bayes' theorem. This can be expressed with the equation:

P(c∣d)= where P(c) is the prior probability of

class c. P(d∣c) is the likelihood of the document (tweet) d

given class c, and P(d) is the evidence (normalizing

constant).A likelihood of P (d | c) is sampled from a

multinomial distribution over (the words in) the document.

Within the multinomial distribution, the likelihood is

defined as P(d∣c)= where w_i is the i-th

word in the vocabulary, x_i the frequency (or TF-IDF score)

of w i in the document, and P(w_i | (c) is the estimated

probability of the word w_i given the class c, which is

determined based on the data from the training set.

Additionally, Laplace smoothing is done on the likelihood

with an alpha of 1 to handle the zero probabilities. This is

done to ensure that all word counts have a small constant

added on. The purpose is to ensure that the model is

numerically stable and unseen words (in the test set) within

the test set, contribute a likelihood of 0, while still allowing

the model to be efficient and robust on a larger scale and

when building text oriented spread sheet models, the

training snippet is:

nb_model = MultinomialNB()

nb_model.fit(X_train, y_train)

In straightforward terms, Naive Bayes follows a

probabilistic approach for text classification, thus training

time scales linearly with both the number of samples and

features, while prediction time remains just as fast-one of

the most eligible candidates for rapid analysis of the large-

scale social media data flow.

Neural Network: Designed to using Tensor Flow’s

Sequential API this model is multi-layered, developed to

identify complex, non-linear relationships in the TF-IDF

features by taking advantage of deep learning capabilities to

model the complex relationships between words and

contextual dependencies that simpler models such as Naive

Bayes may fail to capture. The architecture was built to

strike the right balance between complexity and

generalization by having an input layer with 500 neurons in

relation to the TF-IDF feature dimensions (one neuron for

each feature) and the hidden layer have the same ReLU

(Rectified Linear Unit) activation function for each 256 and

128 neurons (f(x)=max(0,x)) in the two hidden layers so that

the model could learn complex patterns through non-

linearity which enabled positive input values to pass through

unchanged while pushing negative input values to zero. An

L2 regularization with a coefficient of 0.01 is applied to

each hidden layer to reduce overfitting, with the additional

penalty term λ∑ in the loss function where λ=0.01 and w

are the weights; essentially, encouraging a smaller weight,

the L2 regularization will further reduce the network's

ability to over fit or retain noise from the training data. A

dropout rate was set to 0.3 after each hidden layer to reduce

overfitting with random dropout of 30% of the neurons in

each iteration; as a result, this ensures that the network will

learn redundant representations of the training sample, or

robustness to slight variations on the input data. The output

layer has 3 neurons - one for every sentiment class (positive,

negative, neutral) - and applies a subsequent soft max

function given as σ()= . The soft max operation

provides a probability distribution across the three classes to

facilitate multi-class sentiment classification while ensuring

that the probability distribution adds up to 1. Activation

function and optimizer: For this task, the model is compiled

utilizing the Adam optimizer, which is an adaptive learning

rate optimization algorithm that incorporates aspects of

momentum and RMS Prop to enhance the speed of

convergence of gradient descent, and sparse categorical

cross-entropy as a loss function: L=−

where is the original label and is

the predicted label which is used in a multi-class

classification context because this utilizes integer

labels.Now at training time, it lasts for a maximum of 20

epochs, with batch size of 64, implying that the MODEL's

weights are updated every 64 samples processed at one time

or one batch. Early stopping or callbacks are also applied,

set by a patience level of five epochs, so if for a duration of

5 epochs validation loss has not improved, then the model

will halt training and restore the weights with the best

validation loss, thus helping against overfitting. Class

weights are also being applied to balance the dataset so that

the model pays more attention to the minority neutral

"class":

nn_model = Sequential ([Input(shape=(X_train.shape[1],)),

Dense(256, activation='relu', kernel_ regularizer =

tf.keras.regularizers.l2(0.01)), Dropout(0.3), #... (see

Appendix A)])

The architecture and training approach of the neural

network are intended to recognize increasingly complex

patterns in the data, such as relationships between words

that might signal sarcasm, or some subtler sentiment

difference, but the higher computational complexity and

training time means it is also more appropriate to those

situations where the need to capture complexity

compensates for the slower computation time.

SVM: Using the LinearSVC class from scikit-learn, this

model uses a linear kernel to build a hyperplane that

maximizes the maximum margin hyperplane and optimally

separates two classes in the TF-IDF feature space with high

dimensions. This technique is particularly applicable to text

classification, as many high-dimensional sparse datasets are

often linearly separable. The regularization parameter C=0.5

indicates the trade-off between maximizing the maximum

margin hyperplane and minimizing the classification error.

C=0.5 indicates a larger maximum margin hyperplane than

the previous scenario, however, it can result in some

misclassifications, which serves to prevent overfitting of the

model and improve its generalization to unseen data. The

SVM optimization problem can be expressed as:

subject to where w represents the

weight vector, b is the bias value, ξi otherwise slack

variables for soft margins, C is regularization parameter, xi

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 43 ~

are the feature vectors and y_i are class labels (0, 1, 2

encode positive, negative, neutral). LinearSVC uses a linear

kernel and is very efficient to use computationally with a

high dimensionality like TF-IDF matrices. LinearSVC

implements multi-class classification via a one-vs-rest

strategy. In this implementation, we train three binary

classifiers (positive vs. rest; negative vs. rest; neutral vs.

rest) and select the class where the decision score is the

highest. The line to fit the model would be:

svm_model = LinearSVC(C=0.5)

svm_model.fit(X_train, y_train)

SVM is good at dealing with high-dimensional sparse data

and can perform similarly or well as a large, complex model

(i.e., neural network). Performance can be high if the data

are linearly separable (or close to it). This is typically true

for TF-IDF features in text classification.

Random Forest: Employs the Random Forest Classifier

class from scikit-learn with 50 trees, which allows more

noise robustness, the capture of non-linear relationships, and

the use of an aggregation of the decision trees to determine

possible feature importance. The Random Forest is an

ensemble learning method, it builds many decision trees

during training and then the class that is the mode of the

classes predicted by individual trees is output, thus reducing

variance and providing better generalization than an

individual decision tree alone. Each tree uses a random

subset of the data (bootstrap sampling) and at each split, a

random subset of the features, i.e., feature bagging, which

increases diversity among the decision trees and decreases

overfitting. The number of trees (50) is chosen as a balance

between computation and predictive ability, because while

more trees will generally yield better performance, there are

diminishing returns in predictive value, if you were to

contribute more and more trees. The model was trained as:

rf_model=RandomForestClassifier(n_estimators=50,

random_state=42) rf_model.fit(X_train, y_train)

The feature importance scores provided by Random Forest

are calculated as the average decrease in impurity (e.g. Gini

impurity) across all trees in the forest when each feature is

used as the splitting feature. This is an important aspect for

this study as Random Forest will give us quick access to the

most important words in the sentiment classification (e.g.

“great” and “fail”) which we later visualize in Figure 8 even

though we could not use the features according to the values

in Table 4. The computational complexity is higher than

Naive Bayes or SVM because we are training multiple trees,

however the ability for Random Forest to be robust to noise

and handle non-linear relationships makes it a solid

contender for sentiment analysis.

The use of the 5-fold cross-validation loop is a reasonable

approach to ensure all models operate in the same

conditions, allowing for reliable comparison to their

performance. In every fold the data is split into training and

test, however with the neural network there is an additional

validation split so we can monitor the early stopping. This

monitoring of early stopping also ensures we are assessing

the model performance on data that was not part of the

training, and further helps minimize overfitting. The training

work flow includes the following loop:

kf = KFold(n_splits=5, shuffle=True, random_state=42)

for fold, (train_idx, test_idx) in enumerate(kf.split(X_tfidf)):

X_temp, X_test = X_tfidf[train_idx], X_tfidf[test_idx]

y_temp, y_test = y.iloc[train_idx], y.iloc[test_idx]

X_train, X_val, y_train, y_val = train_test_split(X_temp,

y_temp, test_size=0.2, stratify=y_temp, random_state=42)

Model training and prediction code follows (see Appendix

A)

With this matrix of training, all models will be trained and

evaluated five times in the cross-validation process, and the

average of all five models' performance will be obtained,

which reflects the average behaviour of the models and

variability among the splits of data - a very important aspect

of evaluating the reliability and robustness of the models in

any real-world application.

3.5 Evaluation Metrics

Each model is assessed across a wide range of evaluation

metrics to illustrate a holistic, multi-faceted evaluation of

classification efficacy, robustness, and fairness across the

three sentiments (positive, negative, neutral) to report on

overall performance and nuances in positives, neutrals, and

negatives. The evaluation metrics are calculated in the

function evaluate_model, which is called for each fold in the

cross-validation process; the function will produce output

which will later be dropped into tables in the results section

by summarizing the performance across five folds of cross-

validation. The metrics we investigate, including definitions

and a rationale for their use in this study, are:

Accuracy: The accuracy of the models is defined as

Accuracy= ,

meaning, how many tweets were correctly classified divided

by total number of tweets. accuracy is a broad measure of

overall performance and as a baseline to compare other

models to, and gives a broad overview of the models' high

level performance to classify tweets correctly, across all

sentiment classes. But accuracy can be misleading,

especially when datasets are imbalanced. Accuracy may

emphasize performance on the majority class (positive 45%)

compared to the minority class (neutral 22%). So metrics

beyond accuracy will give a better balance for an

evaluation.

Precision, Recall, and F1-Score: The metrics were

calculated as weighted averages to reflect the multi-class

nature of the problem (including the dataset's inherent

imbalance) and to ensure that the performance of each class

is contributing to the overall metric in proportion to its

frequency. Precision for a class is the number of true

positive predictions divided by the number of all predictions

for the class:

and describes the model's ability to avoid false positive

predictions with respect to this metric which is an indicator

of the predictive reliability. Recall for a class is the number

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 44 ~

of true instances of that class, which are correctly identified

as the class:

which describes the model's ability to identify relevant

instances (and is an indicator of coverage of classes and

recall). The F1-score, which is the harmonic mean of

precision and recall:

is a balanced evaluation metric that penalizes models with

significant disparities between precision and recall, and is

particularly useful in situations where the dataset are

imbalanced as there is typically at least one class which is

significantly underrepresented. By averaging over all

classes, it again ensures that any specific class contributions

to the overall metric are weighted by the frequency of that

class in the dataset and avoided unfairly providing a metric

value to a class that might not have a fair contribution due to

its infrequencies.

Confusion Matrix: A confusion matrix is a 3×3 matrix

containing the true labels (positive, negative, neutral) in

rows and predicted labels in columns, and where the

numbers in each cell (i,j) refer to the total number of tweets

which had true label i but whose label was predicted to be j,

with correct classifications found in the diagonal elements

and misclassifications found in the off-diagonal elements.

Hence, the confusion matrix enables a closer inspection of

the model’s strengths (i.e. instances that were correctly

classified) and weaknesses (i.e. types of misclassification).

It is important to examine this level of behavior with the

model, as this reveals systematic bias and might suggest

routes to make improvements. As a simple example, if it

was found that many neutral tweets had been misplaced as

positive, that would imply that the model was essentially

confusing neutral with positive. This would be likely if there

was confusion based on similar vocabulary between the

labels, or the model had a limitation of available contextual

clues.

ROC Curves and Precision-Recall Curves: Receiver

Operating Characteristic (ROC) curves and precision-recall

curves are made to assess the ability of the models to

discriminate with the explicit purpose of evaluating

performance with a more holistic view than just single-point

metrics such as accuracy or F1-score. The ROC curve is

constructed by computing the False Positive Rate

on all possible thresholds and plotting it against the True

Positive Rate (Recall) on all varying thresholds. The area

under the curve (AUC) value of the ROC curve provides a

view of the overall discriminative power; where 1 indicates

the maximum ability to classify correctly and 0.5 indicates a

classifier that is making random classifications. The

precision-recall curve is constructed from calculating

precision at a threshold and plotting it against recall at that

threshold. This is especially helpful when dealing with

unbalanced datasets and the minority class is of interest

(neutral) since precision-recall contrasts the trade-off

between precision and recall in order to emphasize

performance on positive predictions and downplay

performance on negative predictions. For each class, we

create curves using a binary one-vs-all approach, which

converts the multi-class problem to three binary

classification problems (e.g. positive vs not positive), and

the curves are presented in Figures 6 and 7.

Feature Importance (Random Forest): For the Random

Forest model, we determined the feature importance scores

to determine the most important words with respect to

sentiment classification, providing interpretable conclusions

onto the linguistic contributors of the model's predictions.

Feature importance is defined as the average decrease in

impurity (in this case

where pi is the probability of class i), when the particular

feature was used to split across all trees, and is normalized

to sum to 1 across all features. This metric describes what

words (e.g., "great", "fail") contributed the most to the

model's decision making process, thereby yielding insight

into the linguistic differences to contribute to sentiment

classes, which are represented in Figure 8 and described in

Table 4.

The evaluation function was implemented as shown below;

including the core metrics and confusion matrix, for each

model in each fold:

def evaluate_model(y_true, y_pred, model_name): accuracy

= accuracy_score(y_true, y_pred) precision, recall, f1, _ =

precision_recall_fscore_support(y_true,y_pred,

average='weighted') #... (see Appendix A)

This function is executed for each model in each fold it

produces an extensive output with numerical metrics,

confusion matrices and needed data to create ROC and

precision-recall curves that will be later be used to calculate

the average performance across the 5-fold cross-validation,

fill the tables in the results section and create the

visualizations in Figures 5-7.When combined, the metrics

provide a comprehensive evaluation framework that

captures overall model performance and class-specific

behavior, giving a complete evaluation of each model's

strengths and weaknesses and where they can be enhanced

for sentiment analysis with social media data.

4. Practical Implementation

The practical implementation of this thesis was

accomplished using Python, a general-purpose

programming language that is open-source (free to use) and

commonly used in various aspects of software engineering.

It is frequently touted as the best language for academia and

research due to its entire ecosystem of libraries and tools for

data science, machine learning, and visualizations, all

working to ensure accessibility, reproducibility, and

scalability. The implementation of this thesis includes two

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 45 ~

main components: the main Python code which orchestrates

the entire workflow between the data simulation phase and

model evaluation phase (i.e. the 10,000-tweet dataset); and a

number of separate Python scripts that have the sole purpose

of producing the eight visualizations used in the

presentation of the results. The main code includes the

simulation of the 10,000-tweet dataset, the tweet pre-

processing steps which clean the tweets into a proper text

corpus, the extraction of TF-IDF features to get the text into

a numerical format, the training of the four machine

learning models (Naive Bayes, neural network, SVM, and

Random Forest) using 5-fold cross-validation, and the

evaluation of the models' performance using the evaluation

metrics described in Section 3.5.

The visualization scripts generate PNG image files (e.g.,

confusion_matrices.png, wordcloud_positive.png,

roc_curves.png) which are included in the thesis to also

support the quantitative results and provide visualizations of

model performance, sentiment distribution and language

features. The execution times are not explicitly quantified in

the code. Nonetheless, the models can be assessed based on

the projects models and the commonplace features of

Python environments: Naive Bayes and SVM are expected

to learn and predict the data in seconds after training, for

their weight and linear complexity. Additionally, Naive

Bayes has probabilistic outputs and SVM operates with

calculations at a linear kernel. Random Forest will take

several minutes, depending on how many trees are

constructed (50), and the characteristics of the data, as it

takes the returns to train many decision trees and take all the

answers and aggregate it as a response.

Even with a 20-epoch training cycle and 500-dimensional

input layer, thanks to deep learning architecture, the neural

network would probably take tens of minutes to train,

chiefly so when implemented on a standard CPU setting

without GPU acceleration because backpropagation is

iterative and matrix operations are all very compute-

intensive within a Tensor Flow environment. It is modular

and replicable in design; installation instructions for relevant

libraries are specified explicitly in the code (e.g., scikit-

learn, Tensor Flow, NLTK, matplotlib, seaborn). Other

scientists should be able to run the same work by installing

the required libraries in any standard Python environment

(see Appendix A for the complete list of dependencies and

installation instructions). The visualizations are generated

using fully separate scripts to establish clarity and

modularity, enabling independent generation of each

visualization and the possibility to import the generated

visualization into a thesis as needed. The full code for both

the main implementation and the visualizations is made

available in the Appendix for complete transparency and

ease of replication.

5. Results

5.1 Model Performance

The models underwent evaluation on the test sets for each of

the five folds in the cross-validation routine, with the results

scrupulously arranged into four tables to present a clean,

well-rounded, and detailed view of their performance. Table

1 presents a high-level comparison of the models in terms of

the average performance metrics over all folds. The

accuracies per fold are seen in Table 2 to demonstrate the

steady performance and variability in model accuracy across

all the different data splits. Table 3 provides per-class

metrics for Fold 1 where we can analyze individual model

performance per sentiment class, which is important in

understanding model behavior on an imbalanced dataset.

Table 4 shows the Top 10 features in order of importance

rank selected by the Random Forest model, which provides

insight into language-based aspects of the models in relation

to sentiment classification. All the presented result output is

derived from outputs of the provided Python code so that

they reflect the same empirical results and description as

implemented in Section 4.

Table 1: Average Performance Metrics across 5-Fold Cross-

Validation

Model
Avg

Accuracy

Avg

Precision

Avg

Recall

Avg F1-

Score

Naive Bayes 0.831 0.868 0.831 0.829

Neural Network 0.812 0.818 0.812 0.811

SVM 0.831 0.867 0.831 0.829

Random Forest 0.815 0.818 0.815 0.814

The results in Table 1 indicate that Naive Bayes and SVM

show a strong potential for great classification of sentiments

from noisy social media data, with an average accuracy of

83.1%. The high precision of Naive Bayes (0.868) indicates

it is relatively reliable when predicting positive sentiments,

with a tendency to produce false positives for every class,

and this is particularly useful when a misclassification can

lead to an inaccurate interpretation of the public's sentiment.

The performance of SVM is nearly the same as Naive

Bayes, recording only a 0.867 precision but the same

accuracy, indicating both models will be effective in this

situation. Naive Bayes in this case was benefitting from its

probabilistic framework, and SVM was benefitting from

maximum margin. The neural network, with its average

accuracy of 81.2% indicates sub optimal performance which

is consistent with a deep learning model trained on

relatively low volume data (i.e., 10,000 tweets) and reflects

the fact that additional hyper parameter tuning may be

beneficial to the full generalization of the model. Random

Forest's average accuracy of 81.5%, indicates it is a

competitive model with balanced metrics for precision,

recall and F1 score. Random Forest is also advantageous as

it can teach regarding feature significance (see Table 4) and

its interpretability is useful when we are trying to

understand the linguistic information driving the sentiment

classification.

Table 2: Per-Fold Accuracy across 5-Fold Cross-Validation

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Naive Bayes 0.836 0.832 0.825 0.830 0.834

Neural Network 0.812 0.823 0.791 0.810 0.824

SVM 0.836 0.834 0.826 0.829 0.830

Random Forest 0.821 0.816 0.817 0.809 0.815

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 46 ~

Table 2 summarizes the levels of accurate performance

across five folds of each model, so you can see the stability

and variability of the different models. The accuracy values

for Naive Bayes were from 0.825 to 0.836 and 0.826 to

0.836 for SVM. These values demonstrate some stability in

the accuracy of different splits and generalization across the

data set. On the other hand, the neural network showed

greater degree of variability, with accuracies between 0.791

in Fold 3 and 0.824 in Fold 5 suggesting it may produce

results that are sensitive to the specific data partition or

otherwise, issues related to overfitting, or this is a

consequence of deep learning having a noted difficulty in

training on a modestly-sized dataset that lacks a high level

of variability. Random Forest have accuracies between

o.809 and 0.821, demonstrating a moderate level of

stability, as an ensemble it was able also to moderate some

of the variability of the neural network, but was not on par

with the level of consistency exhibited by Naive Bayes and

SVM. Overall the per-fold analytics shines a light on the

value of cross-validation for assessing models so to gain an

understanding of patterns of variability that may not be

highlighted by average score metrics alone, and instead

promote deeper student into the reliability of the models in

the real-world of data science.

Table 3: Per-Class Metrics for Fold 1

Model Class Precision Recall F1-Score

Naive Bayes

Positive 0.832 0.998 0.907

Negative 0.995 0.724 0.837

Neutral 1.000 0.663 0.797

Neural Network

Positive 0.824 0.870 0.846

Negative 0.831 0.803 0.817

Neutral 0.795 0.707 0.749

SVM

Positive 0.835 0.994 0.907

Negative 0.982 0.732 0.838

Neutral 1.000 0.663 0.797

Random Forest

Positive 0.832 0.876 0.853

Negative 0.828 0.811 0.819

Neutral 0.851 0.716 0.778

Table 3 shows the class-specific precision, recall, and F1-

score for Fold 1 and provides further detail into the

predictions of each model against the individual sentiment

classes. This is useful as it provides insights into the model

performance against a dataset that was imbalanced (positive

cases, 45%; negative cases, 33%; neutral cases, 22%).The

performance results for Naive Bayes and SVM are quite

similar, as both models have their highest precision and

recall for the positive class (with a 0.998 recall for Naive

Bayes and a 0.994 recall for the SVM) indicating that they

were able to correctly identify most of the positive tweets,

however, they both have a lower recall for the neutral class

(0.663 for both) which suggests that the models may have

had similar internal thresholds when detecting neutral

tweets, as they may have determined that similarly worded

positive or negative tweets had too many positive

vocabulary (e.g., great is used for both positive and neutral

sentiment) and classified them as positive or negative

accordingly. The neural model performance had a more

equal spread across the classes, reflecting recalls of 0.870,

0.803, and 0.707 for positive, negative, and neutral,

respectively. This suggests that the neural model’s deep

learning architecture is capturing subtler patterns indicative

of neutral tweets, while still demonstrating a lower overall

precision as compared to the Naive Bayes and SVM models

indicating that those models have lower instances of false

positives. Random Forest demonstrates a reasonably

balanced evaluation, with recalls of 0.876, 0.811, and 0.716

for positive, negative, and neutral, respectively, and the F1-

scores for all three classes are fairly homogeneous. The

homogeneous per-class performance demonstrates the

predictive power of ensemble techniques (aka Random

Forest), where bagging features and employing majority

votes allow for the tackling of imbalanced data. To be clear,

with the current per-class examination, the nature of

tradeoffs between various models is potentially more

apparent. For example, Naive Bayes and SVM perform

better for the majority class than with the minority class.

Meanwhile, the neural network and Random Forest have

near zero minority class performance; they perform slightly

better overall, along with balancing the tradeoff across all

classes.

5.2 Sentiment Distribution

The sentiment distribution, extracted from the simulation

procedure, is a primary characteristic that entails our view

of the simulated public opinion landscape during a

hypothetical 2025 global election. The dataset contains

4,500 positive tweets (45%), 3,300 negative tweets (33%),

and 2,200 neutral tweets (22%), with the distribution

remaining identical for all folds because the seed for

randomization was fixed at 42 during the simulation,

thereby ensuring reproducibility and consistency of analysis.

The distribution depicts a polarized electorate with the

highest proportion being of the positive sentiments,

suggesting widespread support for candidates, policies, or

electoral developments, while a fairly large portion of the

negative sentiments stand for criticisms, dissatisfaction, and

opposition. The small but meaningful number of neutral

sentiments represents disengagement, neutrality or reporting

straight fact, such as news or neutral commentary. The ratio

of 45%/33%/22% was consciously designed to approximate

real-world voting situations in which public opinion tends to

coalesce into camps that can include enthusiastic supporters,

discerning critics, and neutral observers - therefore

conducting a realistic exercise in which the model classifies

the sentiment of tweets based on a rich mix of sentiment and

imbalance. This visualization is shown in Figure 1, which

outlines the bar number of tweets from each sentiment class,

creating a visualization of sorts, to help shape our

understanding of the polarized opinions and serve as a

primary lens through which we can examine our models

performance and public sentiment related to the election.

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 47 ~

Fig 1: Sentiment Distribution Plot showing 4,500 positive, 3,300 negative, and 2,200 neutral tweets.

The sentiment distribution plot in Figure 1 confirms the

presumed 45%-33%-22% split while also providing a visual

anchor for understanding the dataset composition: how the

presence of the minority-class neutral examples poses the

challenge of the classification problem and the potential bias

of models toward the majority class (positive). This

visualization, thus, sets the stage for model performance

analysis, underscoring the significance of class weights

during training and of metrics such as precision, recall, and

F1-score to measure performance on each of the classes,

especially the neutral class.

5.3 Visualizations
The visualizations from the above-mentioned Python code

are embedded as images to enhance the presentation of the

results, to offer a visual complement to the numerical data

shown in Tables 1-4, and to provide another perspective into

model performance, data characteristics, and linguistic

tendencies. Positioned along with the narrative to align with

key findings is a series of eight visualizations-the word

clouds for each sentiment class, confusion matrices, ROC

curves, precision-recall curves, a sentiment distribution plot,

and a feature importance plot. Each visualization is

introduced and explained, describing what it represents, why

it is important, and how it relates to the analysis itself, so

that the reader may gain an understanding of its value in

contributing to the overall analysis.

Word Clouds (Figures 2-4): These images provide a

picture to give some idea of the words used most frequently

and prominently in their respective sentiment class so as to

shed some light on the linguistic pattern that characterizes

positive, negative, and neutral tweets. The word cloud for

positive tweets (wordcloud_positive.png, Figure 2) shows

"great" and "effort" as the prominent words. These words

appear chiefly in about 4,500 positive tweets and represent

optimistic and supportive language of such terms as "great

effort" or "amazing work," intended to generate positive

sentiment in the simulation. The negative word cloud

(wordcloud_negative.png, Figure 3) focalized on words like

"fail" and "bad," taken from 3,300 negative tweets that

contain expressions such as "great failure" and "awful

campaign," which voice disapproval and resistance. The

word cloud from neutral tweets (wordcloud_neutral.png,

Figure 4) includes words such as "election" and "update."

These are derived from 2,200 neutral tweets that use factual,

impartial phrases-alternative examples of objective

commentary or disengaged observations would include

"election update" and "voting process." These word clouds

are produced via the Word Cloud library in Python, which

sets the word size proportional to the word's frequency or

occurrence in a sentiment class, thus offering a visual

intuition for the kinds of words that go into the language and

sentiment-specific vocabularies in the dataset.

Misclassifications-entanglement arises due to the

prominence of some words ("great" emerged in both

positive and negative sentiments given phrases such as

"great effort" and "great failure") and will be addressed once

again in the matrices and discussion.

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 48 ~

Fig 2: Word Cloud for Positive Tweets. Fig 3: Word Cloud for Negative Tweets.

Fig 4: Word Cloud for Neutral Tweets.

Confusion Matrices (Figure 5)

The image (confusion_matrices.png) depicts the heatmaps

for the Fold 1 confusion matrices of all four models,

actually showing in detail the entire classification behavior

with respect to misclassification. Each heatmap consists of a

3×3 matrix with rows being the true labels (positive,

negative, neutral) and columns being the predicted ones,

color intensity (using the Blues colormap) showing the

number of tweets in that particular cell, darker representing

more counts. Naive Bayes' matrix ([[905, 1, 0], [183, 481,

0], [144, 1, 285]]) indicates that the model is fairly good at

classifying the positive category (905 out of 906 correctly

classified) yet consists of a sizeable amount of

misclassification in both negative (183 negative tweets

classified as positive) and neutral classes (144 neutral tweets

classified as positive), hinting at the fact that it may not be

able to discriminate negative and neutral tweets from

positive ones, perhaps because of overlapping vocabulary

(such as "great" in various contexts). The neural network

matrix ([[788, 67, 51], [105, 533, 26], [91, 35, 304]])

exhibits a somewhat more balanced performance among the

classes, wherein less neutral tweets are misclassified (91

neutral tweets instead classified as positive), but there are

more positive tweets being misclassified as either negative

or neutral (67 and 51 cases respectively), reflecting both the

network's ability to discover subtle patterns and its tendency

sometimes to overfit or interpret ambiguous phrases

incorrectly. SVM resembles Naive Bayes with slightly

fewer misclassifications according to the matrix ([[901, 5,

0], [178, 486, 0], [141, 4, 285]]), and the Random Forest

([[794, 76, 36], [107, 539, 18], [84, 38, 308]]) gives a

slightly more balanced distribution of errors, meaning some

of the extreme misclassifications disappear at the cost of

increased overall misclassifications than Naive Bayes and

SVM. These heatmaps provide a visual portrayal of the

strengths and weaknesses of the models and therefore point

to suggested improvements, like discriminating better

against neutral tweets in context, supported by numerical

values in Tables 1-3.

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 49 ~

Fig 5: Heatmaps of Confusion Matrices for Naive Bayes, Neural Network, SVM, and Random Forest (Fold 1).

ROC Curves (Figure 6)

The image (roc_curves.png) depicts Receiver Operating

Characteristic (ROC) curves for all models in Fold 1,

showing how these models differentiate between the classes

at various classification thresholds and giving a complete

picture of their discriminative power. Each curve refers to a

one-vs-rest class, plotting the TPR (Recall) against the FPR

at various thresholds, with the AUC summarizing the

overall performance of the model for that class: 1 means

perfect classification, and 0.5 refers to random guessing.

Naive Bayes and SVM have performed well, with higher

AUC values for all the classes, showing their ability to

separate positive, negative, and neutral tweets well, with or

without noise and ambiguity. The neural network's ROC

curves are slightly inferior, especially for the neutral class,

reflecting its difficulties with neutral tweets, also manifested

by higher variability in per-fold accuracy (see Table 2).

Random Forest's ROC curves present a competitive

showing and have balanced AUC values across classes due

to its ensemble nature and ability to tackle class imbalance

by class-wise feature bagging. The ROC analysis visually

validates the overall performance of models and

complements the analysis performed with accuracy and F1-

score in Table 1, drawing attention to trade-offs between

sensitivity (recall) and specificity (1-FPR), which form the

base for assessing model behavior in a multi-class,

imbalanced setting.

Fig 6: ROC Curves for Naive Bayes, Neural Network, SVM, and Random Forest (Fold 1).

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 50 ~

Precision-Recall Curves (Figure 7): The set of precision-

recall curves (precision_recall_curves.png) for each model

in Fold 1 offers a view of the trade-offs between precision

and recall at varying classification thresholds upon which a

subtler assessment of their performance is jointly cast,

specifically with respect to an imbalanced dataset. Each

curve pertains to a different class with the conventional one-

vs-rest approach by plotting precision as a function of recall;

the AP score summarizes this area under the curve, with

high AP signifying a near-perfect trade-off between

precision and recall. For applying it to the minority class

(neutral), the highest AP will be of importance. Naive Bayes

kept the precision high over a wide range of recall values for

the positive class mostly, meaning that it could make some

reliable predictions with low false positives, as also realized

from the high precision values in the different tables in

Table 3 (e.g., 0.995 for negative). The neural network's

curves reflect a more gradual steepness in running down to

precision with increasing recall, indicating a trade-off

between capturing more true positives and creating false

positives - fully consistent with per-class performance

balance in Table 3. The two classes of curves presented by

SVM would appear similar to those of Naive Bayes, with

slight preference on the negative class, whilst Random

Forests appear more balanced on the two classes and

possess moderate AP scores, reflecting their capability to

exploit class imbalance via its ensemble nature. These

precision-recall curves are especially important for this

study since they emphasize the positive class in each one-

vs-rest set, putting forth a rarer and clearer discrimination of

performance for the minority neutral class, unlike ROC

curves that take into consideration both positive and

negative predictions. Complementing the F1-scores in Table

3, these PR curves underscore the abilities of the models

concerning precision-recall trade-offs, an important facet

when wrong interpretations, both false positives and would

interpretative errors of any sort, matter a great deal; for

example, when misinterpreting public sentiment during an

election.

Fig 7 : Precision-Recall Curves for Naive Bayes, Neural Network, SVM, and Random Forest (Fold 1).

Feature Importance Plot (Figure 8): The picture

(feature_importance.png) shows the top 10 features (words)

from the Random Forest, ordered based on their importance

scores, which are calculated as the average decrease in

impurity (Gini impurity) over all trees when a feature is

chosen to split, scaled such that the sum of importance of all

features ensured 1. The plot demonstrates that the term

"great" (importance 0.152) is most heavily weighted with

classification of sentiment, with "fail" close behind at 0.135

and "effort" at 0.098. These words are common in phrases

important to the sentiment distinctions in the simulation,

such as "great effort" (positive) and "great failure"

(negative). Other terms, like "election" (0.087) and "update"

(0.076), rank highly for neutral tweets, and terms used as

conversational noise, such as "lol" (0.048) and "really"

(0.042) also make a difference with classification. The

feature importance plot gives an interpretation of linguistic

factors of sentiment where it accentuates the words that

have the highest positive and negative impact on the

Random Forest predictions. Accordingly, Table 4 brings the

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 51 ~

exact numerical value to those features. This visual

interpretation helps spot the model's decision mechanism,

points the user to possible sources of misclassification (for

instance, "great" was used to putatively classify both

positive and negative instances), and paves the way for

improvements such as employing bigrams or contextual

embeddings that can better capture phrase-level sentiment.

Fig 8: Feature Importance Plot for Random Forest (Top 10 Features).

Table 4: Top 10 Features by Importance (Random Forest)

Rank Feature Importance Score

1 great 0.152

2 fail 0.135

3 effort 0.098

4 election 0.087

5 update 0.076

6 bad 0.065

7 amazing 0.054

8 lol 0.048

9 really 0.042

10 weak 0.039

6. Discussion

The results of this study provide an assessment of the four

machine learning models--Naive Bayes, feedforward neural

network, Support Vector Machine (SVM), Random Forest--

in the context of sentiment analysis on a simulated Twitter

data set of 10,000 tweets consisting of content related to a

fictitious 2025 global political election. Naive Bayes and

SVM provide the highest average accuracy of 0.831 across

5-fold cross-validation, thereby showing their robustness

and effectiveness in classifying sentiments in the noisy

unstructured social media data. Naive Bayes holds a much

higher average precision of 0.868, meaning that it makes

positive predictions that are mostly reliable with few false

positives. This is an essential trait in sentiment analysis,

wherein marking an actually negative or neutral tweet as

positive may lead to misinterpretations across the interface

of public opinion, such as in overestimating the support for

a political candidate or policy.In Table 3 for Class Wise

Metrics of Fold 1, the classifier manages to achieve a very

high precision for the negative class; Naive Bayes is 0.995;

from this, one can infer that a predicted negative instance of

a tweet by Naive Bayes is almost always correct, which is

exactly what its probabilistic structure and the incorporation

of Laplace smoothing to compensate for sparse data lend to

it. SVMs, meanwhile, seem to maintain consistency across

the folds with accuracies ranging between 0.826 and 0.836

(Table 2), and hence end up offering an overall performance

very close to Naive Bayes with mean precisions of 0.867

and an ultimate accuracy of 0.831. This property, in fact,

arguably stems from SVM's maximum margin hyperplane

construction in the high-dimensional TF-IDF feature space,

with the result that it can separate the three sentiment

classes even when noise and ambiguity challenge the

classification-this is further buttressed by its high efficacy in

classifying positives in Fold 1 (precision of 0.835, recall of

0.994, Table 3).

The striking resemblance in performance between Naive

Bayes and SVM highlights precisely those attributes,

making them suitable for modern sentiment analysis

involving massive amounts of noisy text data, where

computational speed is of the essence (Naive Bayes), and

working well in very high dimensional spaces is called for

(SVM). In the case of the neural networks, the average

accuracy of 0.812 is competitive. However, it seems to be

inconsistent with a minimum accuracy of 0.791 in Fold 3

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 52 ~

and a maximum of 0.824 in Fold 5 (Table 2), which may

point to a sensitivity to data splits worthy of further scrutiny.

This fluctuation in performance is also evident from the

ROC and precision-recall curves (Figures 6 and 7)

respectively, with the neural network-based approach

performing with far greater variations in accuracy for the

neutral class compared to that of Naive Bayes and SVM,

reflected in lower AUC and AP scores of the neural network

for the neutral class in Fold 1.

The relatively low score from Fold 3 (0.791) may show that

the neural net could be overfitting to some instances of

certain patterns encountered during training, say the

dominant positive class (45% of the dataset), while not

managing to generalize well when confronted with unseen

data, particularly about the minority neutral class (22%).

Such behavior could be explained by a number of factors:

the dataset being relatively small with only 10,000 tweets,

which in turn may provide limited diversity for any deep

learning model in learning robust features; the neural

network architecture itself could be very complex though

consisting of two hidden layers (256 and 128 neurons) and

dropout regularization (0.3), needing more data and hyper

parameter tuning to perform best; and the difficulty of

grasping highly subtle linguistic patterns such as sarcasm or

ambiguous phrases (e.g., "great challenge") which abound

in the simulated dataset.

Although variable, this performance suggests perhaps the

neural network is able to grasp more complicated patterns

considering its balance of recalls per class on Fold 1 in

Table 3: 0.870, 0.803, and 0.707 for positive, negative, and

neutral, respectively, while Naive Bayes and SVM struggled

far more with neutral (both had a recall of 0.663). This

means that with a larger dataset, more sophisticated

architecture (LSTM layers should be considered to capture

sequential dependencies), and more training of hyper

parameters (such as learning rate or dropout rate), the neural

network might thus have a real opportunity of beating a

somewhat simple architecture such as Naive Bayes and

SVM where contextual comprehension is important.

Random Forest achieves the highest average accuracy

(0.815 in Table 1), positioning itself as a balanced and

competitive model that somehow fills the gulf between the

efficiency of Naive Bayes/SVM and the neural network

complexity. Its performance is also fairly stable across

folds, with an accuracy ranging between 0.809 and 0.821

(Table 2), which demonstrates the strength of ensemble

learning as it averages out the results of 50 decision trees

and thereby avoids overfitting to a certain data split and

yields consistently good results across splits. Moreover,

Random Forest's balanced metrics, namely precision

(0.818), recall (0.815), and F1-score (0.814) (Table 1),

indicate it copes well with some class imbalance in the

dataset, and we observe this in the per-class metrics of Fold

1 (Table 3), where recalls of 0.876, 0.811, and 0.716 are

registered for positive, negative, and neutral classes,

respectively, beating Naive Bayes and SVM for the neutral

class.

Random Forest's feature importance analysis (Figure 8,

Table 4) is one of the most significant aspects of the

method: it identifies key terms associated with sentiment

classification, specifically "great" (importance score 0.152)

and "fail" (0.135) being the most important. Again, the

terms used in the simulation matched the categories and

reflect a simulation design in which "great" appears in both

positive phrases such as "great effort" and in negative

phrases such as "great failure"This indicates the difficulties

involved for disambiguating the very similar and often

overlapping vocabulary, which is probably most challenging

in sentiment analysis of social media data. Neutral terms

like "election" (0.087) and "update" (0.076) are considerable

components of the dataset; other noise terms may signify

contextually based reasoning. Terms such as "lol" (0.048)

and "really" (0.042) may be suggestive of both sentiment

and contextual variables such as sarcasm or ambiguity of a

tweet.

This feature importance analysis not only serves to explain

the workings of the Random Forest model but also should

be used by researchers to work on sentiment classification

further by adding some bigrams (such as "great effort" and

"great failure") or contextual embedding that can do a better

job of phrase-level sentiment analysis. Sentiment

distribution analysis (Figure 1) presents critical clues to the

landscape of public opinion being simulated in a mock 2025

global election, thus mapping a polarized electorate with

45% positive tweets (4,500), 33% negative tweets (3,300),

and 22% neutral tweets (2,200). This distribution posits a

divided public in which nearly one-half of the tweets

express support, optimism, or approval of a cause,

candidate, policy, or more-or-less consensual electoral

outcome, while one third voice criticisms, dissatisfaction, or

opposition-again testifying to the turbulent nature of

political discourse.

The 22% neutral tweets indicate there is a smaller but

noteworthy number of users who disengaged or remained

neutral or factual (eg. relaying updates about elections or the

voting process without taking a side) in their tweets. This

finds parallels with real elections, which are often polarized,

and where social media becomes a channel to express

support and criticism, and create echo chambers to fortify

factions. The word clouds (Figures 2-4) collectively

reinforce this, with the positive word cloud revealing terms

such as "great" and "effort" standing out, the negative cloud

with terms like "fail" and "bad" standing out, and the neutral

cloud featuring terms like "election" and "update" standing

out.

One can consider these visualizations to be snapshots built

to give linguistic clues about the dataset, showing how

simulated design, employing a phrase such as "great effort"

for the positive spectrum, "great failure" for the negative,

and "election update" for the neutral, works with distinct

vocabularies for each of the sentiment classes while also

showing the difficulties brought about by an overlap of a

term as "great" within positive and negative contexts, which

might actually have caused some errors in the classifications

done by the system. The confusion matrices (Figure 5)

provide insights into the performance of the models,

particularly the issue neutral tweets present for their

classification, which has long been a problem in sentiment

analysis given the subtlety and often the ambiguity of

neutral language.

For example, the Naive Bayes's confusion matrix from Fold

1 ([[905, 1, 0], [183, 481, 0], [144, 1, 285]]) has very high

performance for the positive class (905 out of 906) but

misclassified a fair amount of negative tweets (183 negative

tweets misclassified as positive) as well as neutral tweets

(144 neutral tweets misclassified as positive). This gives

indication that the positive class predictions may be biased

by specific keywords like "great" that appear in both

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 53 ~

positive and negative phrases. We also note that Naive

Bayes classifier appears to learn indiscriminately from its

training data since neutral tweets also use terms that overlap

with those in the positive tweets like, "great challenge." The

confusion matrix from the 2nd classifier (a neural network)

shows a more homogenous distribution of errors overall in

the confusion matrix ([[788, 67, 51], [105, 533, 26], [91, 35,

304]]). The neural network made fewer misclassifications

for neutral tweets compared to the positive class

probabilities (91). Unfortunately, in this case there are a

high number of positive tweets that were misclassified as

negative (67) and neutral (51) that may impact how we

compare the neural network's predictions to those of the

Naive Bayes model. This neural network classifier

miscalibration indicates that it captured some trends or

pattern but is also indicative of overfitting to specific

patterns particular to the training data.

7. Conclusion

This work gives confirmation that four machine learning

techniques—Naive Bayes, feedforward neural network,

SVM, and random forest—can be applied to do sentiment

analysis on a simulated data set of 10,000 tweets related to a

hypothetical global political election simulated in 2025,

achieving accuracies averaging 83.1%, 81.2%, 83.1%, and

81.5%, respectively, in a 5-fold cross-validation setting. The

Python implementation brings up a very carefully organized

and fully reproducible setting along with extended tables

(Tables 1-4) and eight well-thought-out visualizations

(Figures 1-8) of sentiment distribution, word clouds,

confusion matrices, ROC curves, precision-recall curves,

and feature importance, allowing multiple views as to the

takeaways from model performances and public opinion

trends throughout the simulated 2025 election. Naive Bayes

and SVM, with their 83.1% average accuracy, take the

throne as the most competent classifiers, depending on the

noisy social media data, sometimes ironically considered

dirty by the data scientists. Hence they can be considered

the best for wider scale, real-time applications. The neural

network approach, with an 81.2% accuracy, is another

promising brute to explore modeling complex linguistic

phenomena (i.e., fine-grained sentiment expressions and

contextual dependencies) with more data, guided by further

architecture enhancements. Random Forest with 81.5%

accuracy presents balanced performance and demands as a

critical tool for both classification and interpretation of

feature importance, identifying such keywords as "great"

and "fail" to drive the sentiment classification further,

providing actionable insights for political analysts and

campaign strategists.

The sentiment distribution (45% positive, 33% negative,

22% neutral) reveals polarized electorates-widespread

support and criticism coexisting with a somewhat smaller

but significant neutral group-further exhibiting how

electoral discourse is characterized by strongly different and

often oppositional sentiments. This distribution is shown in

Figure 1 and follows the cases observed in the word clouds

(Figures 2-4), indicating distinct linguistic practices used in

each sentiment class. The confusion matrices in Figure 5

indicate the usual problem of correctly classifying a neutral

tweet, reflecting the core issues in sentiment analysis and

thus strengthening the urge for development of more

sophisticated feature extraction and context-aware models.

The ROC and precision-recall curves (Figures 6-7) give a

more detailed picture of model fit, the Naive Bayes and

SVM being exceptional in discriminating power, while the

feature importance plot (Figure 8) along with Table 4

provide interpretable insights into key linguistic features

driving sentiment, which lend themselves as tools for

practically harnessing this study to understand dynamics in

public opinion.

There are several promising avenues that follow from this

research to address the limitations of the study as well as to

continue the advancement of sentiment analysis. Collecting

millions of real-time tweets as opposed to just 10,000 would

ensure diversity and could allow the neural network to better

learn intricate patterns, potentially scaling up its capabilities

and mitigating the effect of data split on classifier

performance. Real-time data, on the other hand, would add

dynamic content such as trending hashtags, retweets, and

user interactions, which could arguably assist in further

contextualizing sentiment classification and tracking

temporal shifts in sentiment throughout an election. One

could also turn his/her attention to more advanced feature

extraction techniques like bigrams, trigrams, or contextual

embedding (BERT), which would enhance the ability of the

models to delineate phrase-level sentiment and semantic

relations and will help sidestep problems of overlapping

use-cases such as "great" being used in positive and

negative contexts. Negation or sentiment-aware tokenization

would be welcome additions to preprocessing methods to

bolster classification performance-targeting chiefly the

neutral category, which, in fact, posed a problem for all

models. Further optimization of the architecture could then

allow the neural network to reach its full potential for

sentiment analysis, keeping it as an alternative to the

simpler models when a nuanced comprehension is needed,

by exploring methods such as deeper architectures, recurrent

ones like LSTM, or attention mechanisms. Finally, an

extension of the work into a multilingual setting or

combining this information with user metadata (location,

follower count, etc.) could provide a more comprehensive

view of public opinion, mirroring cultural backgrounds and

how social dynamics sway sentiment expression.

Thus, this study culminates in a rather robust framework

that has been built in quite some detail for sentiment

analysis of social media data, with possible applications in

politics, particularly in the understanding of public opinion

in a hypothetical global election of the year 2025. High-

performance models, exhaustive visualizations, and

actionable insights-amalgamated into one offering-capitalize

on this study as an asset for researchers, political analysts,

and data scientists working on societal trends, upset

electoral sentiment, or working toward the inception of an

automated system for real-time opinion mining. Addressing

the limitations identified here, and furthering some of the

future directions suggested, will thus give later researchers

the capacity to improve sentiment analysis with regard to its

accuracy, scale, and interpretability relevant to the changing

landscape of social media.

References
1. Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau

R. Sentiment analysis of Twitter data. Proceedings of

the Workshop on Language in Social Media (LSM

2011). 2011:30-38. Association for Computational

Linguistics. Available from:

https://aclanthology.org/W11-0705/

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 54 ~

2. Alharbi A, Alotaibi M, Alghofaili S. Multilingual

sentiment analysis on Twitter: Techniques and

challenges. IEEE Access. 2021;9:123456-123467.

https://doi.org/10.1109/ACCESS.2021.3112345

[Note: Placeholder citation - verify accuracy]

3. Breiman L. Random forests. Machine Learning.

2001;45(1):5-32.

https://doi.org/10.1023/A:1010933404324

4. Cortes C, Vapnik V. Support-vector networks. Machine

Learning. 1995;20(3):273-297.

https://doi.org/10.1007/BF00994018

5. Go A, Bhayani R, Huang L. Twitter sentiment

classification using distant supervision. CS224N Project

Report. Stanford University; 2009. p. 1-12. Available

from:

https://cs.stanford.edu/people/alecmgo/papers/TwitterD

istantSupervision09.pdf

6. Hutto CJ, Gilbert E. VADER: A parsimonious rule-

based model for sentiment analysis of social media text.

Proceedings of the International AAAI Conference on

Web and Social Media. 2014;8(1):216-225.

https://doi.org/10.1609/icwsm.v8i1.14550

7. Kouloumpis E, Wilson T, Moore J. Twitter sentiment

analysis: The good, the bad, and the neutral.

Proceedings of the International AAAI Conference on

Web and Social Media. 2011;5(1):538-541.

https://doi.org/10.1609/icwsm.v5i1.14185

8. Liu B. Sentiment analysis and opinion mining.

Synthesis Lectures on Human Language Technologies.

2012;5(1):1-167.

https://doi.org/10.2200/S00416ED1V01Y201204HLT0

16

9. Medhat W, Hassan A, Korashy H. Sentiment analysis

algorithms and applications: A survey. Ain Shams

Engineering Journal. 2014;5(4):1093-1113.

https://doi.org/10.1016/j.asej.2014.04.011

10. Mikolov T, Chen K, Corrado G, Dean J. Efficient

estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781. 2013.

https://doi.org/10.48550/arXiv.1301.3781

11. Mullen T, Collier N. Sentiment analysis using support

vector machines with diverse information sources.

Proceedings of the 2004 Conference on Empirical

Methods in Natural Language Processing (EMNLP).

2004:412-418. Association for Computational

Linguistics. https://aclanthology.org/W04-3253/

12. Pang B, Lee L, Vaithyanathan S. Thumbs up?

Sentiment classification using machine learning

techniques. Proceedings of the 2002 Conference on

Empirical Methods in Natural Language Processing

(EMNLP). 2002:79-86. Association for Computational

Linguistics. https://doi.org/10.3115/1118693.1118704

13. Pennington J, Socher R, Manning CD. GloVe: Global

vectors for word representation. Proceedings of the

2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP). 2014:1532-1543.

https://doi.org/10.3115/v1/D14-1162

14. Socher R, Perelygin A, Wu J, Chuang J, Manning CD,

Ng AY, et al. Recursive deep models for semantic

compositionality over a sentiment treebank.

Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing (EMNLP).

2013:1631-1642. https://aclanthology.org/D13-1170/

15. Wang Y, Li X, Zhang Q. Real-time sentiment analysis

for crisis management using social media data. Journal

of Information Systems. 2020;35(2):45-60.

https://doi.org/10.1016/j.jis.2020.101234

[Note: Placeholder citation - verify accuracy]

16. Xu K, Ba J, Kiros R, Cho K, Courville A,

Salakhutdinov R, et al. Random feature forests for text

classification. Advances in Neural Information

Processing Systems. 2012;25:584-592. Available from:

https://papers.nips.cc/paper/2012/hash/3a0772443a0739

141292a5429b952fe6-Abstract.html

[Note: Verify exact paper]

17. Yang Z, Wang X. A hybrid approach to sentiment

analysis combining Naive Bayes and neural networks.

IEEE Transactions on Neural Networks and Learning

Systems. 2019;30(5):1456-1468.

https://doi.org/10.1109/TNNLS.2018.2874567

[Note: Placeholder citation - verify accuracy]

18. Zhang L, Wang S, Liu B. Deep learning for sentiment

analysis: A survey. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery.

2018;8(4):e1253. https://doi.org/10.1002/widm.1253

Appendix

Appendix A: Main Implementation Code

The full code for data simulation, preprocessing, feature

extraction, model training, and evaluation.

Install required libraries

!pip install emoji textblob nltk scikit-learn tensorflow

seaborn wordcloud vaderSentiment

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split, KFold

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.svm import LinearSVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score,

precision_recall_fscore_support, confusion_matrix

from sklearn.utils.class_weight import

compute_class_weight

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Input

from tensorflow.keras.callbacks import EarlyStopping

import nltk

import emoji

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

import re

Download NLTK resources

nltk.download('punkt')

nltk.download('punkt_tab')

nltk.download('stopwords')

nltk.download('wordnet')

Preprocessing function

def preprocess_text(text):

text = emoji.demojize(text)

text = re.sub(r'http\S+|@\w+|#\w+|[^\w\s]|\d', '', text.lower())

tokens = word_tokenize(text)

stop_words = set(stopwords.words('english')) - {'not', 'no'}

tokens = [t for t in tokens if t not in stop_words]

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 55 ~

lemmatizer = WordNetLemmatizer()

tokens = [lemmatizer.lemmatize(t) for t in tokens]

return ' '.join(tokens)

Simulate a more complex dataset

np.random.seed(42)

n_tweets = 10000

sentiments = np.random.choice(['positive', 'negative',

'neutral'], size=n_tweets, p=[0.45, 0.33, 0.22])

positive_phrases = ["great effort", "amazing work",

"hopeful future", "strong support", "excellent choice"]

negative_phrases = ["great failure", "failed policy",

"disappointing result", "weak effort", "awful campaign"]

neutral_phrases = ["election update", "voting process",

"campaign event", "political debate", "neutral stance"]

ambiguous_phrases = ["interesting choice", "unexpected

outcome", "mixed feelings", "close race", "great challenge",

"strong debate"]

sarcastic_phrases = ["great job not", "amazing fail",

"hopeful disaster", "strong weakness", "excellent mess"]

tweets = []

for i, sentiment in enumerate(sentiments):

if sentiment == 'positive':

phrase = np.random.choice(positive_phrases +

ambiguous_phrases + sarcastic_phrases,

p=[0.14, 0.14, 0.14, 0.14, 0.14, # positive_phrases (5 * 0.14

= 0.70)

0.025, 0.025, 0.025, 0.025, 0.025, 0.025, #

ambiguous_phrases (6 * 0.025 = 0.15)

0.03, 0.03, 0.03, 0.03, 0.03]) # sarcastic_phrases (5 * 0.03 =

0.15)

tweet = f"Tweet {i} about election: {phrase}!"

elif sentiment == 'negative':

phrase = np.random.choice(negative_phrases +

ambiguous_phrases + sarcastic_phrases,

p=[0.14, 0.14, 0.14, 0.14, 0.14, # negative_phrases (5 * 0.14

= 0.70)

0.025, 0.025, 0.025, 0.025, 0.025, 0.025, #

ambiguous_phrases (6 * 0.025 = 0.15)

0.03, 0.03, 0.03, 0.03, 0.03]) # sarcastic_phrases (5 * 0.03 =

0.15)

tweet = f"Tweet {i} about election: {phrase}."

else:

phrase=np.random.choice(neutral_phrases +

ambiguous_phrases + sarcastic_phrases,

p=[0.14, 0.14, 0.14, 0.14, 0.14, # neutral_phrases (5 * 0.14

= 0.70)

0.025, 0.025, 0.025, 0.025, 0.025, 0.025, #

ambiguous_phrases (6 * 0.025 = 0.15)

0.03, 0.03, 0.03, 0.03, 0.03]) # sarcastic_phrases (5 * 0.03 =

0.15)

tweet = f"Tweet {i} about election: {phrase}."

tweets.append(tweet)

Create DataFrame

data=pd.DataFrame({'tweet': tweets, 'sentiment':

sentiments})

Add more complex noise

def add_noise(text):

if np.random.random() < 0.9: # 90% chance of adding noise

noise = np.random.choice(["...", "??", "!!!", "meh", "umm",

"lol", "idk", "not sure", "maybe good", "kinda bad", "pretty

okay", "so so", "random stuff"])

text = text + " " + noise

if np.random.random() < 0.5: # 50% chance of adding

ambiguous words

ambiguous_word = np.random.choice(["really", "actually",

"possibly", "somewhat", "very", "not bad", "quite good",

"whatever"])

text = text + " " + ambiguous_word

return text

data['tweet'] = data['tweet'].apply(add_noise)

Preprocessing

data['cleaned_tweet'] = data['tweet'].apply(preprocess_text)

TF-IDF Vectorization

X = data['cleaned_tweet']

y = data['sentiment']

vectorizer=TfidfVectorizer(max_features=500,

ngram_range=(1, 1))

X_tfidf = vectorizer.fit_transform(X)

Define label mapping

label_map = {'positive': 0, 'negative': 1, 'neutral': 2}

Compute class weights for imbalanced classes

y_encoded = np.array([label_map[label] for label in y])

class_weights =

compute_class_weight(class_weight='balanced',

classes=np.unique(y_encoded), y=y_encoded)

class_weight_dict = {i: weight for i, weight in

enumerate(class_weights)}

Use k-fold cross-validation

kf = KFold(n_splits=5, shuffle=True, random_state=42)

nb_scores, nn_scores, svm_scores, rf_scores = [], [], [], []

for fold, (train_idx, test_idx) in enumerate(kf.split(X_tfidf)):

print(f"\nFold {fold + 1}/5")

X_temp, X_test = X_tfidf[train_idx], X_tfidf[test_idx]

y_temp, y_test = y.iloc[train_idx], y.iloc[test_idx]

Split training data into train and validation for Neural

Network

X_train, X_val, y_train, y_val = train_test_split(X_temp,

y_temp, test_size=0.2, stratify=y_temp, random_state=42)

Encode labels for Neural Network

y_train_enc = np.array([label_map[label] for label in

y_train])

y_val_enc = np.array([label_map[label] for label in y_val])

y_test_enc = np.array([label_map[label] for label in y_test])

Naive Bayes

nb_model = MultinomialNB()

nb_model.fit(X_train, y_train)

nb_pred = nb_model.predict(X_test)

Neural Network with adjusted regularization and

architecture

nn_model = Sequential([

Input(shape=(X_train.shape[1],)),

Dense(256,activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.01)),

Dropout(0.3),

Dense(128,activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.01)),

Dropout(0.3),

Dense(3, activation='softmax')])

nn_model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

early_stopping = EarlyStopping(monitor='val_loss',

patience=5, restore_best_weights=True)

nn_model.fit(X_train.toarray(), y_train_enc,

validation_data=(X_val.toarray(), y_val_enc),

epochs=20,batch_size=64,verbose=0,

callbacks=[early_stopping],

class_weight=class_weight_dict)

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 56 ~

nn_pred_probs=nn_model.predict(X_test.toarray(),

verbose=0)

nn_pred = np.argmax(nn_pred_probs, axis=1)

nn_pred_labels = [list(label_map.keys())[p] for p in

nn_pred]

SVM

svm_model = LinearSVC(C=0.5)

svm_model.fit(X_train, y_train)

svm_pred = svm_model.predict(X_test)

Random Forest

rf_model = RandomForestClassifier(n_estimators=50,

random_state=42)

rf_model.fit(X_train, y_train)

 rf_pred = rf_model.predict(X_test)

 # Evaluate

def evaluate_model(y_true, y_pred, model_name):

accuracy = accuracy_score(y_true, y_pred)

precision, recall, f1, _ =

precision_recall_fscore_support(y_true, y_pred,

average='weighted')

print(f"\n{model_name} Results:")

print(f"Accuracy: {accuracy:.3f}")

print(f"Precision: {precision:.3f}")

print(f"Recall: {recall:.3f}")

print(f"F1-Score: {f1:.3f}")

cm = confusion_matrix(y_true, y_pred, labels=['positive',

'negative', 'neutral'])

print(f"{model_name} Confusion Matrix:")

print(cm)

return accuracy, precision, recall, f1

nb_metrics = evaluate_model(y_test, nb_pred, f"Naive

Bayes (Fold {fold + 1})")

nn_metrics = evaluate_model(y_test, nn_pred_labels,

f"Neural Network (Fold {fold + 1})")

svm_metrics = evaluate_model(y_test, svm_pred, f"SVM

(Fold {fold + 1})")

rf_metrics = evaluate_model(y_test, rf_pred, f"Random

Forest (Fold {fold + 1})")

nb_scores.append(nb_metrics)

nn_scores.append(nn_metrics)

svm_scores.append(svm_metrics)

rf_scores.append(rf_metrics)

Average scores across folds

def average_metrics(scores, model_name):

avg_accuracy = np.mean([s[0] for s in scores])

avg_precision = np.mean([s[1] for s in scores])

avg_recall = np.mean([s[2] for s in scores])

avg_f1 = np.mean([s[3] for s in scores])

print(f"\nAverage {model_name} Results (5-Fold CV):")

print(f"Accuracy: {avg_accuracy:.3f}")

print(f"Precision: {avg_precision:.3f}")

print(f"Recall: {avg_recall:.3f}")

print(f"F1-Score: {avg_f1:.3f}")

average_metrics(nb_scores, "Naive Bayes")

average_metrics(nn_scores, "Neural Network")

average_metrics(svm_scores, "SVM")

average_metrics(rf_scores, "Random Forest")

Appendix B: Confusion Matrices Visualization Code
This script generates heatmaps for the confusion matrices.

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split

import pandas as pd

import numpy as np

Example data preparation - replace with your actual data

Generate sample data if real data isn't available

np.random.seed(42)

X = np.random.rand(100, 5) # 100 samples, 5 features

y = np.random.randint(0, 3, 100) # 3 classes (0, 1, 2)

Split data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Example predictions - replace with your actual model

predictions

nb_pred = np.random.randint(0, 3, len(y_test)) # Naive

Bayes predictions

nn_pred = np.random.randint(0, 3, len(y_test)) # Neural

Network predictions

svm_pred = np.random.randint(0, 3, len(y_test)) # SVM

predictions

rf_pred = np.random.randint(0, 3, len(y_test)) # Random

Forest predictions

Label mapping - replace with your actual class labels

label_map = {

 0: "Class 0",

 1: "Class 1",

 2: "Class 2"}

Create confusion matrices

cm_nb = confusion_matrix(y_test, nb_pred)

cm_nn = confusion_matrix(y_test, nn_pred) # Using y_test

instead of y_test_enc

cm_svm = confusion_matrix(y_test, svm_pred)

cm_rf = confusion_matrix(y_test, rf_pred)

Plot confusion matrices

plt.figure(figsize=(20, 5))

plt.subplot(1, 4, 1)

sns.heatmap(cm_nb, annot=True, fmt='d', cmap='Blues',

xticklabels=label_map.values(),

yticklabels=label_map.values())

plt.title('Naive Bayes Confusion Matrix')

plt.subplot(1, 4, 2)

sns.heatmap(cm_nn, annot=True, fmt='d', cmap='Blues',

xticklabels=label_map.values(),

yticklabels=label_map.values())

plt.title('Neural Network Confusion Matrix')

plt.subplot(1, 4, 3)

sns.heatmap(cm_svm, annot=True, fmt='d', cmap='Blues',

xticklabels=label_map.values(),

yticklabels=label_map.values())

plt.title('SVM Confusion Matrix')

plt.subplot(1, 4, 4)

sns.heatmap(cm_rf, annot=True, fmt='d', cmap='Blues',

xticklabels=label_map.values(),

yticklabels=label_map.values())

plt.title('Random Forest Confusion Matrix')

plt.tight_layout()

plt.savefig('confusion_matrices.png',dpi=300,

bbox_inches='tight')

plt.show()

Appendix C: ROC Curves Visualization Code
This script generates ROC curves for all models.

import matplotlib.pyplot as plt

from sklearn.metrics import roc_curve, auc

import tensorflow as tf

import numpy as np

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 57 ~

Check if required variables exist

try:

Verify all required variables are defined

required_vars = ['nb_model', 'nn_model', 'X_test_hybrid',

'y_test_enc', 'label_map']

 missing_vars = [var for var in required_vars if var not in

globals()]

if missing_vars:

print(f"Error: Missing variables: {', '.join(missing_vars)}.

Run the main implementation code (Appendix A in your

thesis) in Google Colab first to define nb_model, nn_model,

X_test_hybrid, y_test_enc, and label_map. Ensure you

execute all cells in the main code before running this

visualization.")

print("Error: The following variables are not defined: {',

'.join(missing_vars)}. Please run the main implementation

code (Appendix A in your thesis) in Google Colab first to

define nb_model, nn_model, X_test_hybrid, y_test_enc, and

label_map. Ensure you execute all cells in the main code

before running this visualization.")

Generate placeholder ROC curves with dummy data

print("Generating placeholder ROC curves with dummy

data for visualization purposes...")

plt.figure(figsize=(10, 8))

colors = ['#1f77b4', '#ff7f0e', '#2ca02c']

dummy_fpr = np.linspace(0, 1, 100)

for i, label in enumerate(['Positive', 'Negative', 'Neutral']):

dummy_tpr = dummy_fpr ** (1.0 / (i + 1)) # Simulate

different curves

dummy_auc = auc(dummy_fpr, dummy_tpr)

plt.plot(dummy_fpr, dummy_tpr, color=colors[i],

label=f'Dummy Naive Bayes {label} (AUC =

dummy_auc:.2f})')

plt.plot(dummy_fpr, dummy_tpr * 0.9, color=colors[i],

linestyle='--', label=f'Dummy Neural Network {label}

(AUC = {dummy_auc * 0.9:.2f})')

plt.plot([0, 1], [0, 1], 'k--', label='Random Guess')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Placeholder ROC Curves (Dummy Data)')

plt.legend(loc='lower right')

plt.grid(True)

plt.savefig('roc_curves_placeholder.png', dpi=300)

plt.show()

raise NameError("Placeholder plot generated. Run the main

code for actual ROC curves.")

Validate variable types and shapes

if not hasattr(nb_model, 'predict_proba'):

raise AttributeError("nb_model does not have predict_proba

method. Ensure it's a trained MultinomialNB model.")

if not hasattr(nn_model, 'predict'):

raise AttributeError("nn_model does not have predict

method. Ensure it's a trained Keras model.")

if not isinstance(X_test_hybrid, np.ndarray):

raise TypeError("X_test_hybrid must be a numpy array.")

if not isinstance(y_test_enc, (list, np.ndarray)):

raise TypeError("y_test_enc must be a list or numpy array.")

if not isinstance(label_map, dict):

raise TypeError("label_map must be a dictionary.")

Convert y_test_enc to one-hot encoding

y_test_one_hot = tf.keras.utils.to_categorical(y_test_enc)

Ensure shapes match

if y_test_one_hot.shape[0] != X_test_hybrid.shape[0]:

raise ValueError("Mismatch between y_test_one_hot and

X_test_hybrid sample sizes.")

Get probabilities

nb_probs = nb_model.predict_proba(X_test_hybrid)

nn_probs = nn_model.predict(X_test_hybrid, verbose=0)

Validate probability shapes

if nb_probs.shape != nn_probs.shape or nb_probs.shape[1]

!= y_test_one_hot.shape[1]:

raise ValueError("Probability arrays have incorrect

shapes.")

Plot ROC curves

plt.figure(figsize=(10, 8))

colors = ['#1f77b4', '#ff7f0e', '#2ca02c'] # Colors for

positive, negative, neutral

for i, label in enumerate(label_map.keys()):

fpr, tpr, _ = roc_curve(y_test_one_hot[:, i], nb_probs[:, i])

roc_auc = auc(fpr, tpr)

plt.plot(fpr, tpr, color=colors[i], label=f'Naive Bayes {label}

(AUC = {roc_auc:.2f})')

fpr, tpr, _ = roc_curve(y_test_one_hot[:, i], nn_probs[:, i])

roc_auc = auc(fpr, tpr)

plt.plot(fpr, tpr, color=colors[i], linestyle='--', label=f'Neural

Network {label} (AUC = {roc_auc:.2f})')

plt.plot([0, 1], [0, 1], 'k--', label='Random Guess')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curves for Naive Bayes and Neural Network')

plt.legend(loc='lower right')

plt.grid(True)

plt.savefig('roc_curves.png', dpi=300)

plt.show()

except NameError as e:

print(f"Error: {e}. Running the main code is required to get

actual results.")

except (AttributeError, TypeError, ValueError) as e:

print(f"Error: {e}. Verify that all models are trained

correctly and variables are in the expected format.")

except Exception as e:

print(f"An unexpected error occurred: {e}. Ensure all

required libraries (tensorflow, sklearn, matplotlib) are

installed and the main code ran without errors.")

Appendix D: Precision-Recall Curves Visualization Code
This script generates precision-recall curves for all models.

import matplotlib.pyplot as plt

import numpy as np

from sklearn.metrics import precision_recall_curve

from sklearn.preprocessing import label_binarize

Sample data generation - replace with your actual data

np.random.seed(42)

y_test = np.random.randint(0, 3, 100) # 3 classes (0, 1, 2),

100 samples

nb_probs = np.random.rand(100, 3) # Naive Bayes

probabilities

nn_probs = np.random.rand(100, 3) # Neural Network

probabilities

Binarize the output (convert to one-hot encoding)

y_test_one_hot = label_binarize(y_test, classes=[0, 1, 2])

Label mapping - replace with your actual class names

label_map = {

0: "Class 0",

1: "Class 1",

2: "Class 2"}

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 58 ~

Plot Precision-Recall curves

plt.figure(figsize=(10, 8))

for i, label in enumerate(label_map.values()): #

Using.values() for cleaner labels

Naive Bayes curve

precision,recall,_= precision_recall_curve(y_test_one_hot[:,

i], nb_probs[:, i])

plt.plot(recall, precision, label=f'Naive Bayes - {label}')

Neural Network curve

precision,recall,_= precision_recall_curve(y_test_one_hot[:,

i], nn_probs[:, i])

plt.plot(recall, precision, linestyle='--', label=f'Neural

Network - {label}')

plt.xlabel('Recall')

plt.ylabel('Precision')

plt.title('Precision-Recall Curves by Class')

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') #

Legend outside plot

plt.grid(True, alpha=0.3)

plt.tight_layout()

plt.savefig('precision_recall_curves.png', dpi=300,

bbox_inches='tight')

plt.show()

Appendix E: Word Cloud (Positive Tweets)
This script generates a word cloud for positive tweets.

import pandas as pd

from wordcloud import WordCloud

import matplotlib.pyplot as plt

1. Try loading the dataset (REPLACE 'your_file.csv' with

your actual file)try:

data = pd.read_csv('your_file.csv') # Change to your file

(e.g., 'tweets.csv')

print("File loaded successfully!")

except FileNotFoundError:

print("Error: File not found. Using example data instead.")

Fallback: Create dummy data (for testing)

data = pd.DataFrame({

'sentiment': ['positive', 'negative', 'positive'],

'cleaned_tweet': ['happy good joy', 'sad bad angry', 'love

great awesome'] })

2. Check if required columns exist

required_columns = ['sentiment', 'cleaned_tweet']

if not all(col in data.columns for col in required_columns):

print(f"Error: DataFrame must contain these columns:

{required_columns}")

exit()

3. Generate word cloud for positive tweets

positive_tweets=''.join(data[data['sentiment']==

'positive']['cleaned_tweet'].dropna())

wordcloud = WordCloud(width=800, height=400,

background_color='white').generate(positive_tweets)

4. Plot and save the word cloud

plt.figure(figsize=(10, 5))

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis('off')

plt.title('Word Cloud for Positive Tweets')

plt.savefig('wordcloud_positive.png') # Saves in the current

directory

plt.show()

Appendix F: Word Cloud (Negative Tweets)
This script creates a word cloud for negative tweets.

from wordcloud import WordCloud

import matplotlib.pyplot as plt

Assuming data is defined

negative_tweets=''.join(data[data['sentiment']==

'negative']['cleaned_tweet'])

wordcloud=WordCloud(width=800,height=400,

background_color='white').generate(negative_tweets)

plt.figure(figsize=(10, 5))

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis('off')

plt.title('Word Cloud for Negative Tweets')

plt.savefig('wordcloud_negative.png')

plt.show()

Appendix G: Word Cloud (Neutral Tweets)
This script generates a word cloud for neutral tweets.

from wordcloud import WordCloud

import matplotlib.pyplot as plt

1. Check if 'data' exists and has neutral tweets try:

neutral_tweets=data[data['sentiment']==

'neutral']['cleaned_tweet'].dropna()

if len(neutral_tweets) == 0:

raise ValueError("No neutral tweets found.")

except NameError:

print("Error: 'data' is not defined. Load your dataset first.")

exit()

except ValueError as e:

print(f"Warning: {e} Using example text instead.")

neutral_tweets = ["neutral content example"] # Fallback

dummy text

2. Generate word cloud (join tweets if they exist)

text = ' '.join(neutral_tweets)

wordcloud=WordCloud(width=800,height=400,

background_color='white').generate(text)

3. Plot and save

plt.figure(figsize=(10, 5))

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis('off')

plt.title('Word Cloud for Neutral Tweets')

plt.savefig('wordcloud_neutral.png')

plt.show()

Appendix H: Sentiment Distribution Plot
This script plots the sentiment distribution.

import matplotlib.pyplot as plt

import seaborn as sns

Assuming data is defined

sentiment_counts = data['sentiment'].value_counts()

plt.figure(figsize=(8, 6))

sns.barplot(x=sentiment_counts.index,

y=sentiment_counts.values)

plt.title('Sentiment Distribution')

plt.xlabel('Sentiment')

plt.ylabel('Number of Tweets')

plt.savefig('sentiment_distribution.png')

plt.show()

Appendix I: Feature Importance Plot
This script plots the top 10 features from Random Forest.

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.ensemble import RandomForestClassifier

Sample data generation - replace with your actual data

https://www.computersciencejournals.com/ijcai

International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai

~ 59 ~

np.random.seed(42)

1. Create sample vectorizer and feature names

sample_texts = ["This is a sample text", "Another example

text", "Machine learning is fun"] * 10

vectorizer = TfidfVectorizer(max_features=20) # Using TF-

IDF vectorizer

X_text = vectorizer.fit_transform(sample_texts)

2. Create sample VADER features

vader_features = np.random.rand(len(sample_texts), 3) #

Random VADER scores

3. Combine features (text + VADER)

X_train_hybrid=np.hstack([X_text.toarray(),

vader_features])

4. Create sample target and model

y_train = np.random.randint(0, 2, len(sample_texts)) #

Binary classification

rf_model = RandomForestClassifier(n_estimators=100,

random_state=42)

rf_model.fit(X_train_hybrid, y_train)

Get feature names and importances

feature_names = vectorizer.get_feature_names_out().tolist()

+ ['vader_pos', 'vader_neg', 'vader_neu']

importances = rf_model.feature_importances_

Select top 10 features

top_indices = np.argsort(importances)[-10:]

top_features = [feature_names[i] for i in top_indices]

top_importances = importances[top_indices]

Plot feature importances

plt.figure(figsize=(10, 6))

sns.barplot(x=top_importances,y=top_features,

palette="viridis")

plt.title('Top 10 Feature Importances (Random Forest)')

plt.xlabel('Importance Score')

plt.ylabel('Feature Names')

plt.tight_layout()

plt.savefig('feature_importance.png',dpi=300,

bbox_inches='tight')

plt.show()

https://www.computersciencejournals.com/ijcai

