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Abstract 
This study addressed the challenge of accurate wind power forecasting by developing a hybrid big data 

time-series model that integrated ARIMA, LSTM, GRU, and CNN-LSTM architectures with pattern-

based sequence clustering. Using a real-world dataset containing 34,080 time-stamped observations 

recorded at 15-minute intervals, the research utilized ten meteorological and operational variables, 

including wind speed, preliminary power output, wind direction, temperature, humidity, atmospheric 

pressure, and rounded turbine measurements, along with YD15, a 15-minute-ahead power target used 

for supervised learning. A comprehensive preprocessing workflow—comprising outlier removal, 

missing-value interpolation, normalization, and feature engineering—was applied to ensure data 

quality. Dynamic Time Warping (DTW) clustering was employed to group similar temporal sequences, 

enabling localized model training across diverse wind regimes. The hybrid architecture was deployed 

in a distributed environment using Apache Spark, ensuring scalability and high processing throughput. 

Experimental evaluation on the dataset demonstrated that the hybrid model consistently outperformed 

standalone approaches, achieving lower MAE and RMSE and higher Accuracy, Precision, Recall, and 

F1-scores. Overall, the study provided a robust, scalable, and data-driven forecasting solution capable 

of capturing both linear and nonlinear wind power dynamics, supporting more reliable smart-grid 

operations and sustainable energy management.  

 

Keywords: Hybrid time-series forecasting, Wind power prediction, ARIMA-LSTM-GRU-CNN-

LSTM, Dynamic Time Warping (DTW) clustering, Big data analytics, Apache Spark, Renewable 

energy forecasting, Short-term power prediction, Meteorological data modelling, Smart grid 

optimization 

 

Introduction 

Wind power has become one of the cleanest and most promising substitutes to conventional 

fossil fuel-based electricity generation. Its growing integration into national and regional 

power grids contributes in a major way to curbing carbon emissions and meeting 

international clean energy targets (Hanifi et al., 2020) [13]. Nevertheless, because of its 

intrinsic intermittency and randomness, the electricity generation from wind farms varies 

greatly over a period of time. Such variability presents serious issues in terms of grid 

stability, load balancing, and reserve unit commitment planning (Neshat et al., 2021) [23]. To 

offset such issues, robust wind power forecasting becomes a critical necessity for optimal 

power system operation, facilitating forward-thinking decision-making in energy scheduling 

and reserve determination. 

Conventional time series forecasting techniques, including the use of the Autoregressive 

Integrated Moving Average (ARIMA) model, have been the primary methodologies to be 

applied in renewable energy forecasting applications (Mohapatra et al., 2023) [22]. ARIMA is 

particularly suitable for identifying linear relationships and short-order dependencies with 

interpretable model parameters and solid baseline predictions (Yang et al., 2022) [31]. 

Nevertheless, ARIMA and related traditional statistical models are not capable of capturing 

nonlinear, chaotic, and non-stationary patterns embedded in meteorological and wind data 

(Dhakal et al., 2022) [7]. Therefore, their predictive ability weakens under intricate temporal 

changes and long-order dependencies. 

By contrast, deep learning architectures like Long Short-Term Memory (LSTM) networks, 

Gated Recurrent Units (GRU), and Convolutional Neural Network-Long Short-Term  
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Memory (CNN-LSTM) have proven to have robust ability 

in learning nonlinear temporal features and long-range 

dependencies from large datasets. LSTM and GRU, with 

their gates, successfully control sequential information flow, 

whereas CNN-LSTM models integrate spatial feature 

extraction as well as temporal learning, thus being strong for 

high-dimensional time series analysis (Wang et al., 2021) 
[5]. However, deep learning models tend to be non-

interpretable, need big training sets, and tend to overfit if 

trained on heterogeneous temporal sequences without 

thorough preprocessing or clustering (X. Huang et al., 2023) 
[13]. In order to bridge these shortcomings, this research puts 

forth a hybrid big data prediction framework that 

synergistically combines traditional statistical modeling and 

deep learning architectures. The ARIMA is employed to 

extract and model linear dependencies and short-term 

dynamics in the wind power time series. Later, deep 

learning models—LSTM, GRU, and CNN-LSTM—are used 

to extract nonlinear and long-term dependencies, allowing 

richer temporal dynamics understanding. In addition, to 

improve generalization and minimize modeling complexity, 

the research uses pattern-based sequence clustering through 

Dynamic Time Warping (DTW), which clusters similar time 

sequences together (Elsaraiti & Merabet, 2021) [11]. The 

clustering enables localized training within homogeneous 

groups, thus improving model robustness and accuracy 

(Sarkar et al., 2023) [25]. 

One of the key differentiating features of this work is its 

application in a big data processing context, utilizing the 

power of Apache Spark and Hadoop Distributed File 

System (HDFS). These tools enable distributed 

computation, parallel data processing, and scalable model 

training over big wind data, with reduced computational 

overhead and near real-time forecasting capabilities (Zhao et 

al., 2015) [33]. This integration allows the proposed system 

to be not only accurate but also scalable and feasible for 

industrial use with massive amounts of streaming data 

(Lydia et al., 2016) [21]. 

 

Key Contributions of the Study 

 Design of a Hybrid ARIMA-LSTM-GRU-CNN-

LSTM Model 

A coherent architecture integrating statistical methods 

and deep learning techniques to appropriately model 

both linear and nonlinear temporal relationships in wind 

power data. 

 Pattern-Based Sequence Clustering with DTW 

Integration of Dynamic Time Warping (DTW) for 

grouping comparable temporal patterns, which 

improves the learning ability of deep networks by 

concentrating on localized as well as homogeneous data 

segments. 

 Big Data-Driven Forecasting Pipeline 

Designing a full-stack big data architecture using 

Apache Spark and Hadoop to facilitate distributed 

computation, effective data preprocessing, and model 

scalability for large wind datasets. 

 Holistic Performance Analysis 

Structured evaluation through multiple performance 

metrics — Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), Accuracy, Precision, Recall, and 

F1-score — to present an overall insight into model 

performance on both regression and classification 

fronts. 

In effect, this hybrid model fills the middle ground between 

conventional statistical models and sophisticated deep 

learning models and solves the computational issues 

presented by big wind data. By integrating ARIMA's 

interpretability with representational strengths of LSTM, 

GRU, and CNN-LSTM in a big data setting, this research 

presents a scalable, high-accuracy, and strong forecasting 

model for next-gen smart grid systems and renewable 

energy optimization. 

 

Research Objectives 
1. To implement robust data preprocessing techniques, 

including outlier detection, missing value interpolation, 

and feature engineering, to ensure high-quality input for 

accurate wind power forecasting. 

2. To apply the ARIMA model for capturing linear 

patterns and short-term dependencies in wind speed and 

wind power time series data, serving as a baseline 

forecasting approach. 

3. To develop and evaluate LSTM networks for 

modeling long-term dependencies and nonlinear 

temporal patterns in wind speed and power data, 

improving prediction accuracy over traditional 

methods. 

4. To implement GRU models as a computationally 

efficient alternative to LSTM, assessing their 

performance in capturing sequential dependencies 

while reducing training complexity. 

5. To design a CNN-LSTM hybrid model that integrates 

convolutional feature extraction with recurrent 

sequence learning, enhancing the prediction of both 

short-term fluctuations and long-term temporal patterns 

in large-scale wind datasets. 

 

Literature Review  

Classical Models of Forecasting 

Classical statistical model approaches to forecasting, 

specifically the Autoregressive Integrated Moving Average 

(ARIMA) and its seasonal counterpart, the Seasonal 

ARIMA (SARIMA), have been long-established pillar 

methods in the analysis and forecasting of time series. These 

models are highly regarded for their mathematical beauty, 

interpretability, and performance in representing linear 

associations and temporal dependencies in data (Ailliot & 

Monbet, 2012) [1]. In the case of wind power and wind speed 

forecasting, ARIMA has been widely utilized to fit 

autoregressive and moving average processes, successfully 

forecasting short-term fluctuation by relying on past 

patterns. SARIMA also expands ARIMA's functions in that 

it includes seasonal differencing and parameters in modeling 

periodic patterns, which are crucial in capturing repetitive 

wind patterns resulting from diurnal or seasonal atmospheric 

cycles. This renders SARIMA very applicable in situations 

where wind power generation shows regular periodic 

variations in particular time frames et al (Singh & 

Mohapatra, 2019) [26]. 
Yet, even though they have been well-demonstrated 
strengths, traditional models like ARIMA and SARIMA are 
challenged considerably when dealing with real-world, 
complicated meteorological data. Wind power generation 
and wind speed are nonlinear, non-stationary, and random 
because they are based on several interacting physical and 
environmental variables such as temperature, humidity, air 
pressure, and terrain (Durán et al., 2007) [9]. Such models 
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presume linearity and stationarity, i.e., they are based on the 
assumption that statistical parameters like mean and 
variance do not change over time — an assumption most 
frequently violated in dynamic atmospheric processes. Thus, 
their predictive ability declines when used for modeling 
sudden changes, turbulence, or chaotic wind patterns, which 
cannot be properly modeled using linear relationships. 
Further, the dependency on heavy manual parameter fine-
tuning (p, d, q, and seasonality parameters) and the fact that 
they cannot learn automatically complicated temporal 
relationships restrict their ability to adapt to changing wind 
patterns (X. Liu & Zhou, 2024) [20]. Furthermore, ARIMA 
and SARIMA models are generally constructed for 
univariate analysis, i.e., accounting for a single dependent 
variable, like wind speed or power, at a time. Conversely, 
actual wind power forecasting in real world settings 
frequently entails multivariate interdependencies — 
interactions among several meteorological variables that 
impact wind generation at the same time (Akçay & Filik, 
2017) [2AS]. Including these relationships in ARIMA models 
calls for additional preprocessing and modeling complexity, 
adding computational load and diminishing scalability with 
large datasets (Grigonytė & Butkevičiūtė, 2016) [12]. In 
addition, classical models do not handle the large volume of 
high-dimensional and high-frequency data produced by 
contemporary wind farms well, and therefore they are not fit 
for big data settings without substantial reworking (Duan et 
al., 2021) [8]. Their non-parallelizable and sequential nature 
is also problematic for distributed processing, which is 
essential for real-time forecasting applications in smart grid 
systems. 
While ARIMA and SARIMA models offer a good 
foundation for capturing and modeling linear temporal 
structures, they lack the ability to model the nonlinear, high-
dimensional, and rapidly varying nature of wind power data 
(Radziukynas & Klementavicius, 2014) [24]. Their inability 
to detect nonlinear relationships and adjust to dynamic 
temporal patterns restricts their forecasting accuracy and 
stability in practical conditions. These constraints have 
pushed researchers to adopt hybrid modeling solutions that 
combine traditional statistical methods with sophisticated 
deep learning architectures. Through the use of the 
explanatory power of ARIMA and the learning capacity for 
patterns in neural networks, hybrid models seek to address 
the shortcomings of conventional methods and deliver more 
precise, scalable, and data-driven forecasting tools 
applicable to contemporary renewable energy management 
systems. 
 
Deep Learning Models 
Deep learning algorithms have become strong competitors 
to conventional statistical techniques in wind speed and 
power prediction because of their potential to learn 
sophisticated nonlinear relationships and temporal structures 
directly from data. Unlike classical methods based on the 
assumption of linearity and stationarity, deep learning 
models can learn complex relationships and hierarchical 
patterns automatically, allowing more precise and resilient 
prediction under dynamic meteorological conditions (K. 
Chen & Yu, 2014) [3]. Of these, Long Short-Term Memory 
(LSTM) networks have received considerable interest for 
having the capability of dealing with long-term 
dependencies in sequence data. With their distinctive gate 
mechanisms—input, forget, and output gates—LSTMs 
efficiently overcome the vanishing gradient problem 
plaguing traditional Recurrent Neural Networks (RNNs), 
enabling them to keep important information over large time 

horizons. This renders them especially well-suited to 
modeling wind speed and power temporal change, where 
long-term atmospheric tendencies and lagged impacts are 
dominant. Besides LSTMs, Gated Recurrent Units (GRUs) 
have been very popular for their computational effectiveness 
and smaller footprint. GRUs require fewer gates and 
parameters while holding similar learning ability, thus 
allowing training to happen in less time and with less 
memory usage. This renders GRUs most suitable for big 
wind datasets and real-time forecasting applications in 
which computational memory and processing speed are 
paramount. LSTM and GRU networks equally have the 
capability to model sequence data, identify complex 
temporal correlations, and learn to accommodate non-
stationary patterns that are inherent in wind dynamics. 
To further improve forecasting accuracy, Convolutional 
Neural Network-Long Short-Term Memory (CNN-LSTM) 
hybrid models have been created in order to leverage the 
complementary advantages of convolutional and recurrent 
architectures. Within such hybrids, convolutional layers 
initially yield spatial and local temporal features from 
multivariate wind information, essentially capturing short-
term oscillations and localized interdependence. These 
identified features are subsequently fed into LSTM layers, 
which capture long-term temporal dynamics and trend 
developments (B. Huang et al., 2021) [14]. Such hierarchical 
learning enables CNN-LSTM models to comprehend both 
micro-level changes and macro-level temporal trends, 
making them exceedingly powerful in handling elaborate, 
high-dimensional time series such as wind power 
information. 
Empirical evidence repeatedly demonstrates that deep 
learning and hybrid architectures excel over conventional 
statistical models in terms of forecasting accuracy and 
resilience. Their capacity to learn from raw, unstructured, or 
high-frequency data bypasses the requirement for heavy 
manual feature engineering (Demirtop & Sevli, 2024) [6]. 
Additionally, these models can be readily adapted for 
multivariate forecasting by including other meteorological 
variables like temperature, pressure, and humidity to 
account for the multifactorial nature of wind generation. 
More advanced training methods, including dropout 
regularization and adaptive optimization algorithms, also 
increase their stability and generalization (Trebing & 
Mehrkanoon, 2020) [28]. 
In the deep learning frameworks—particularly LSTM, 
GRU, and CNN-LSTM hybrids—lie a key shift in wind 
forecasting studies. They overcome the shortcomings of 
traditional methods by detecting nonlinear relationships, 
addressing long-term temporal patterns, and optimizing 
large-scale data processing. Their scalability, flexibility, and 
better predictive accuracy render them invaluable tools for 
contemporary renewable energy prediction, facilitating 
smarter grid operation, effective resource planning, and 
enhanced wind energy integration into green power grids. 
 
2.3 Hybrid and Big Data Forecasting Research 
Current research has considered hybrid forecasting models 
that combine ARIMA with deep learning to take advantage 
of the strengths of both linear and nonlinear models. Hybrid 
methods have demonstrated better results than standalone 
models. Nonetheless, the majority of present research 
utilizes relatively small data sets and does not have efficient 
data processing strategies for large-scale data, which is 
paramount considering the enormous temporal data that 
current wind farms produce. Moreover, there is little 
investigation on sequence clustering methods, e.g., Dynamic 
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Time Warping (DTW), to cluster alike temporal sequences 
and limit heterogeneity, which may increase localized 
model learning and prediction performance. All of them also 
fail to consider the distributed and architectural 
requirements for big data environments computationally, 
and hence there is a gap in scalable and real-time 
forecasting solutions. 
 
Research Gaps 
With advancements in hybrid and deep learning-based 
forecasting, there are still a number of important gaps. 
Firstly, there is no available hybrid ARIMA-deep learning 
framework, which is optimized for scalability in big data, to 
apply to large-scale wind farm data. Second, pattern-based 
sequence clustering for capturing intra-sequence similarities 
has yet to be investigated in wind forecasting, although it 
can enhance model generalization and minimize prediction 
errors. Lastly, comparative studies involving multiple deep 
learning architectures—LSTM, GRU, and CNN-LSTM—
within a hybrid and scalable framework have been lacking. 
Filling these gaps inspires the creation of a holistic, hybrid, 
and big data-empowered forecasting framework that is able 
to provide accurate, scalable, and computation-efficient 
wind power forecasts. 
 
Proposed Methodology  
Dataset descriptions 
The dataset contains 34,080 time-stamped observations 
recorded at 15-minute intervals, representing operational 
and meteorological conditions of a wind power system. It 
includes ten variables: timestamp (DATATIME), wind 
speed (WINDSPEED), preliminary turbine power output 
(PREPOWER), wind direction (WINDDIRECTION), 
temperature, humidity, and atmospheric pressure, along with 
rounded wind speed and rounded power measurements 
available for most records. The dataset also provides YD15, 
a 15-minute-ahead power output target available for a subset 
of samples, making it suitable for supervised short-term 
forecasting. Overall, the dataset combines environmental 
features and turbine response variables, enabling 
comprehensive modeling of wind behavior, power 
generation dynamics, and predictive model development for 
renewable energy forecasting. 
 
3.2 Data Preprocessing 
Proper preprocessing is crucial to support high-accuracy 
forecasting: 

 Missing Values: Missing values in the dataset are 
handled with linear and spline interpolation methods to 

ensure temporal consistency, avoiding discontinuities 
that would compromise model performance. 

 Outlier Detection: Erroneous or anomalous values are 
detected through Z-score and Interquartile Range (IQR) 
techniques. Outliers so detected are replaced with local 
mean smoothing, retaining underlying trends while 
eliminating noise. 

 Normalization: Features are all scaled by Min-Max 
normalization for compatibility with deep learning 
models and for faster convergence in training. 

 Feature Engineering: New features are created to 
increase predictive capability, such as lag variables to 
model temporal dependency, rolling averages to 
eliminate short-term volatility, and cyclical timestamp 
features (e.g., hour of day, day of week) to model 
seasonality and diurnality. 

 
Min-Max Normalization 
 

 
 
Model Framework 
The hybrid forecasting framework combines classical 
statistical modeling and deep learning architectures: 

 ARIMA: Models linear trends and short-term 
dependencies in wind time series and serves as a solid 
baseline. 

 Pattern-Based Clustering: Patterns of similarity are 
identified by clustering sequences with Dynamic Time 
Warping (DTW). Localized model training within the 
clusters enhances generalization and minimizes 
prediction errors in heterogeneous data segments. 

 
Deep Learning Models 

 LSTM: Models long-term dependencies and nonlinear 
temporal dynamics. 

 GRU: Provides computational efficacy at the expense 
of predictive accuracy, ideal for large data. 

 CNN-LSTM: Merges convolutional layers for local 
feature learning with LSTM layers for sequential 
learning, detecting both short-term volatility and long-
term temporal structures. 

 Hybrid Ensemble: Forecasts from ARIMA and deep 
learning models are averaged using weighted average, 
where the weights are tuned by grid search or genetic 
algorithm to enhance overall forecasting performance. 

 

 
 

Fig 1: Proposed Architecture of MDTWHb 
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Figure 1 illustrates the general process of the suggested 

Hybrid Wind Power Forecasting Framework, encompassing 

traditional statistical and deep learning techniques in a big 

data platform. The steps start with data ingestion and 

collection, where wind speed, power generation, and 

meteorological data like temperature, humidity, and air 

pressure are collected from various wind farm locations. 

These data are stored in cloud-based storage with the use of 

the Hadoop Distributed File System (HDFS) for scalability 

and fault tolerance. Preprocessing involves missing value 

handling, outlier removal, normalization, and feature design 

for preparing high-quality inputs for modeling. 

Preprocessed data is then subjected to Dynamic Time 

Warping (DTW)-based pattern clustering, which recognizes 

and aggregates similar temporal patterns for localized model 

learning. In each cluster, more than one model—ARIMA, 

LSTM, GRU, and CNN-LSTM—are trained to identify both 

linear and nonlinear temporal relationships in wind power 

data. Predictions from these models are subsequently 

ensembled through weighted ensemble approach optimized 

with grid search to reduce errors in forecasting. The last step 

is the use of performance metrics such as MAE, RMSE, 

Accuracy, Precision, Recall, and F1-score to evaluate 

performance for efficient, scalable, and high-accuracy 

prediction in real-time smart grid systems. 

 

ARIMA Forecasting 

 

 
 

The ARIMA equation models a time series as a 

combination of past values and past errors to capture linear 

temporal dependencies. Here, represents the influence of 

previous observations (autoregressive part), represents the 

effect of past errors (moving average part), is a constant 

term, and is the random error at time t. This model 

effectively forecasts short-term trends in stationary time 

series data by linking current values with their historical 

behavior. 

 

Dynamic Time Warping (DTW) Distance 

The Dynamic Time Warping (DTW) distance measures the 

similarity between two time series sequences, even if they 

vary in speed or length. In the equation 

 

 
 

 

 and   

represent two time series sequences being compared. The 

DTW algorithm aligns these sequences by stretching or 

compressing their time axes to find the optimal match that 

minimizes the cumulative distance between corresponding 

points. This allows sequences with similar patterns but 

different time shifts or lengths to be effectively compared. 

In this study, DTW is used to cluster similar temporal 

patterns in wind power data, enabling localized learning and 

improving forecasting accuracy in the hybrid model. 

 

Algorithm 1: Hybrid Wind Power Forecasting Using 

ARIMA-LSTM-GRU-CNN-LSTM with DTW 

Clustering 

Input 

 Time series dataset , 

containing wind speed , power output , and 

meteorological variables at timestamp . 

 Model parameters for ARIMA, LSTM, GRU, and 

CNN-LSTM. 

 

Output 

Forecasted wind power values for future time steps  

 

Steps 
1. Collect wind speed, power output, and meteorological 

data from multiple sensors and sources. 

2. Handle missing values using interpolation techniques to 

maintain temporal continuity. 

3. Detect and correct outliers using Z-score and IQR-

based smoothing. 

4. Normalize features through Min-Max scaling for 

consistent model input. 

5. Generate lag features, rolling averages, and time-based 

cyclical features for richer temporal representation. 

6. Apply Dynamic Time Warping (DTW) to compute 

similarity between time series segments. 

7. Cluster similar sequences based on DTW distances to 

form homogeneous temporal groups. 

8. Train ARIMA models on clustered data to capture 

linear and short-term trends. 

9. Train LSTM, GRU, and CNN-LSTM models to learn 

nonlinear and long-term dependencies. 

10. Combine the outputs of all models using a weighted 

averaging ensemble strategy. 

11. Optimize ensemble weights using a Grid Search 

Strategy to minimize overall forecasting error (MAE, 

RMSE). 

12. Evaluate model performance using MAE, RMSE, 

Accuracy, Precision, Recall, and F1-score. 

13. Select the best-performing hybrid configuration for 

final wind power forecasting. 

 

Strategy Explanation 

The algorithm employs a hybrid ensemble learning strategy 

combined with DTW-based sequence clustering. DTW 

clustering groups similar temporal sequences to improve 

localized learning, reducing heterogeneity in training data. 

The predictions from ARIMA, LSTM, GRU, and CNN-

LSTM are fused using a weighted averaging ensemble, with 

weights optimized using grid search (not genetic 

algorithms), ensuring deterministic, reproducible, and 

computationally efficient model blending for large-scale 

wind forecasting in a big data environment. 

 

Big Data Implementation 

In order to process large-scale wind data sets in an efficient 

manner, the system is deployed on Apache Spark with 

PySparkMLlib. Data storage and management are managed 

by the Hadoop Distributed File System (HDFS), allowing 

distributed storage on cluster nodes. Model training and 

testing are parallelized over Spark executors, supporting 

computation and scalable performance against large data 
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sets, and real-time or near-real-time deployment becomes 

possible. 

 

Performance Metrics 

Model performance is evaluated using a combination of 

regression and classification metrics 

Regression Metrics 

a. MAE (Mean Absolute Error) 
 

 
 

b. RMSE (Root Mean Square Error) 

 

 
 

Classification Metrics: When wind speed or power is 

categorized into discrete classes: 

Accuracy, Precision, Recall, and F1-score provide a 

comprehensive assessment of model performance across 

different error dimensions. 

 

3.6 Experimental Setup 

The experimental setup is such that the hybrid model is 

tested under real and scalable settings: 

 Hardware Configuration: The experiments are 

performed on a 16-node Spark cluster with each node 

having 128 GB of RAM and NVIDIA V100 GPUs for 

high-performance deep learning training so that there is 

both computationally efficient as well as scalable 

processing. 

 Software Environment: The project employs Python 

3.10, TensorFlow 2.12 for deep learning models, 

PySpark for distributed data processing, and Hadoop 

3.3 for distributed data storage. 

 Data Splitting Strategy: In order to ensure temporal 

consistency, the dataset is split chronologically into 

70% training, 20% validation, and 10% testing sets. 

This avoids data leakage and mimics real-world 

forecasting situations. 

 Hyperparameter Tuning: Model parameters, such as 

learning rate, layers, hidden units, and batch size, are 

tuned via random search and Bayesian optimization 

combined, trading-off accuracy and computational 

resources. 

 Model Performance Testing: Rolling-window cross-

validation is employed to simulate actual real-time 

forecasting scenarios, enabling continuous testing of 

model performance on sequential data chunks. This 

provides resilience and flexibility of the hybrid system 

to changing wind conditions over time. 

 

This configuration guarantees that the hybrid model that has 

been proposed is not only effective but also scalable and 

computationally light, an attribute that makes it suitable for 

deployment in real-world smart grid and wind farm settings. 

 

Results 

 

 
 

Fig 2: Training and Validation Loss Curve of the Hybrid Forecasting Model 

 

This figure 2 illustrates the convergence behavior of the 

proposed hybrid forecasting model across training epochs. 

The training and validation loss curves show a consistent 

downward trend, indicating effective learning and minimal 

overfitting. The close alignment between both curves 

confirms strong generalization capability and stable model 

performance on unseen data. 
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Fig 3: Convergence Comparison of Deep Learning Models for Wind Power Forecasting 

 

This figure 3 compares the validation loss convergence of 

the CNN-LSTM, LSTM, and GRU models over 100 

training epochs. GRU and LSTM exhibit faster and 

smoother convergence, achieving lower error levels than the 

more complex CNN-LSTM architecture. The results 

highlight that recurrent models, particularly GRU, provide 

more stable and efficient learning for wind power time-

series forecasting. 

 

 
 

Fig 4: Forecast Comparison: Hybrid Ensemble vs. Individual Model Components (300-Hour Window) 

 

This figure 4 presents a detailed comparison between the 

actual wind power values and the forecasts produced by the 

hybrid ensemble and its individual ARIMA, LSTM, GRU, 

and CNN-LSTM components. While each standalone model 

captures certain temporal characteristics, the hybrid 

ensemble aligns most closely with the real data, particularly 

during rapid fluctuations and peak variations. The results 

highlight how model complementarity enhances overall 

forecasting accuracy within short-term operational 

windows. 

 

 
 

Fig 5: Residual Analysis of the Hybrid Forecasting Model 

 

This figure 5 presents the residual behavior of the hybrid 

model through a time-series plot and corresponding error 

distribution. The residuals oscillate closely around zero, 

indicating unbiased predictions with only a few isolated 

spikes during abrupt wind fluctuations. The near-normal 

error distribution with a mean close to zero further confirms 

stable model performance and minimal systematic bias in 

forecasting. 
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Fig 6: Model Performance Comparison Using Actual vs. Predicted Power Scatter Plots 

 

This figure 6 compares the predictive accuracy of ARIMA, 

LSTM, GRU, and CNN-LSTM models against the final 

hybrid ensemble using scatter plots of actual versus 

predicted wind power. Deep learning components 

demonstrate improved alignment with the ideal diagonal 

line, while the hybrid ensemble shows the strongest 

clustering and lowest dispersion, reflected in its highest 

and lowest RMSE. These results confirm that combining 

linear and nonlinear models significantly enhances overall 

forecasting accuracy. 

 

 
 

Fig 7: Cumulative Distribution Function (CDF) of Absolute Forecasting Errors 

 

This figure 7 illustrates the CDF of absolute prediction 

errors for the hybrid forecasting model, highlighting the 

proportion of errors within specific thresholds. The model 

achieves strong reliability, with 80% of errors below 470 

kW and 95% below 974 kW, as indicated by the vertical 

dashed lines. The steep rise in the curve demonstrates that 
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most errors remain small, confirming the model's consistent and stable predictive accuracy. 

 

 
 

Fig 8: RMSE Comparison across Forecasting Models 

 

This Figure 8 compares the RMSE values of ARIMA, 

CNN-LSTM, LSTM, GRU, and the proposed Hybrid 

Ensemble model. While each deep learning model improves 

upon the baseline ARIMA, the hybrid ensemble achieves 

the lowest RMSE (535 kW), demonstrating superior 

forecasting precision. The clear performance gap highlights 

the effectiveness of combining linear and nonlinear learning 

components into a unified hybrid framework. 

 

ARIMA results 

 

 
 

Fig 9: Actual vs. Predicted Wind Power on Training and Test Sets 

 

This figure 9 compares actual and predicted wind power 

values for both the training subset (first 1000 samples) and 

the full test dataset. The close overlap between the curves in 

the training plot demonstrates strong model learning, while 

the test plot shows stable generalization despite the presence 

of sharp spikes in real wind power. Overall, the hybrid 

model effectively captures underlying temporal patterns 

across both seen and unseen data. 
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Fig 10: Scatter Plot Comparison of Actual vs. Predicted Wind Power for Training and Test Sets 

 

This figure 10 compares prediction performance on the 

training and test sets using scatter plots of actual versus 

predicted wind power. The training set shows a tight 

clustering around the ideal diagonal line with high and 

low error metrics, indicating strong learning. The test set 

displays wider dispersion but still maintains a consistent 

upward trend, demonstrating that the model generalizes well 

despite increased variability in real-world wind patterns. 

 

 
 

Fig 11: Training and Test Residual Behavior and Distribution Analysis 

 

This figure 11analyzes the residual patterns of the hybrid 

forecasting model across training and test sets using time-

series plots and distribution histograms. Residuals for both 

sets fluctuate around zero, with the training set exhibiting 

lower variance and tighter normal-like behavior compared 

to the test set. The histograms further confirm that errors are 

centered with limited skewness, indicating stable, unbiased, 

and well-generalized model performance across different 

data conditions. 

 

https://www.computersciencejournals.com/ijcai


International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai 

~ 83 ~ 

 
 

Fig 12: Q Plots of Training and Test Residuals 

 

This figure 12 presents Q-Q plots for training and test 

residuals to assess normality and error distribution behavior. 

Both plots show noticeable deviations from the reference 

line in the tails, indicating the presence of extreme values 

caused by abrupt wind fluctuations. Despite these tail 

deviations, the central regions align reasonably well, 

confirming that the hybrid model maintains stable residual 

behavior for the majority of predictions. 

 

 
 

Fig 13: Autocorrelation (ACF) and Partial Autocorrelation (PACF) of Training and Test Residuals 

 

This figure 13 evaluates the autocorrelation structure of 

model residuals using ACF and PACF plots for both 

training and test sets. Training residuals show near-zero 

autocorrelation across all lags, indicating that the hybrid 

model successfully captures most temporal dependencies 

during learning. Test residuals exhibit modest short-lag 

correlations but remain largely unstructured, confirming that 

the remaining errors behave like random noise and 

validating the model’s forecasting adequacy. 

 

https://www.computersciencejournals.com/ijcai


International Journal of Computing and Artificial Intelligence https://www.computersciencejournals.com/ijcai 

~ 84 ~ 

 
 

Fig 14: Error Behavior across Power Ranges and Relationship between Absolute Error and Actual Power 

 

This figure 14 examines how forecasting errors vary with 

actual power output by analyzing MAE across predefined 

power ranges and plotting absolute errors against actual 

values. Lower power levels exhibit smaller and more stable 

errors, while higher power outputs show larger deviations 

due to increased volatility and peak complexity. The 

positive trend in the scatter plot further indicates that 

forecasting difficulty grows with power magnitude, 

reflecting the nonlinear nature of extreme wind events. 

 

 
 

Fig 15: Performance Metric Comparison Between Training and Test Sets 

 

This figure 15 compares , MAE, and RMSE metrics for 

the training and test sets to evaluate model learning and 

generalization. The training set shows stronger performance 

across all metrics, indicating effective model fitting, while 

the test set reflects increased error due to real-world 

variability and unseen patterns. Overall, the comparison 

highlights that although performance drops on the test set, 

the model maintains acceptable predictive accuracy and 

robustness. 

 
Table 1: Comparative Study of Wind Power Forecasting Methods 

 

Author & Year Method / Model Used Key Findings Gap Identified 

(Zhang et al., 

2022) [4] 
Hybrid ARIMA-LSTM 

Improved short-term forecasting accuracy 

over standalone models. 

Lacked clustering and big-data 

scalability. 

(El-Saieed & 

Mosallam, 2024) 
[10] 

CNN-LSTM Spatial-Temporal 

Model 

Captured spatial correlations and long-term 

dependencies effectively. 

Struggled with non-stationary and 

rapidly fluctuating wind patterns. 

(Thiyagarajan et 

al., 2025) [27] 
Transformer-Based Forecasting 

Achieved high accuracy using attention 

mechanisms. 

Computationally expensive; no 

distributed big-data support. 

Proposed Hybrid 

Model (2025) 

ARIMA + LSTM + GRU + CNN-

LSTM with DTW Sequence 

Clustering in Apache Spark 

Achieved superior accuracy with lower 

MAE/RMSE and improved classification 

metrics using scalable big-data processing. 

Could be enhanced with probabilistic 

uncertainty modeling and adaptive 

online learning. 
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This table 1 compares three recent wind power forecasting 

approaches, highlighting differences in modeling techniques 

and performance. Hybrid ARIMA-LSTM and CNN-LSTM 

models improved accuracy but lacked mechanisms to handle 

non-stationary patterns or large-scale deployment. The 

Transformer-based method delivered high accuracy but 

remained computationally heavy, showing the need for a 

scalable hybrid solution like the proposed model. 

 

Discussion 

The experimental results show various important 

observations about hybrid wind forecasting: 

 Hybrid Modeling Benefit: The fusion of ARIMA with 

LSTM, GRU, and CNN-LSTM exploits complementary 

strengths—linear trend identification from ARIMA and 

nonlinear, long-term sequence learning from deep 

models. Such an integration brings down the prediction 

error by a large margin compared to single models. 

 Role of Pattern-Based Clustering: DTW-based 

clustering facilitates localized learning by clustering 

sequences with comparable temporal dynamics. This 

alleviates heterogeneity among training subsets, 

enabling deep learning models to learn repeating 

patterns more effectively and reduce overfitting, 

particularly under highly volatile regimes. 

 CNN-LSTM for Spatial-Temporal Features: The 

hybrid model takes advantage of CNN-LSTM's 

capability of extracting local temporal patterns prior to 

passing them through recurrent layers. The hierarchical 

learning captures short-term changes and also maintains 

long-term dependencies, enhancing overall accuracy of 

prediction. 

 Scalability and Big Data Implementation: Utilizing 

Apache Spark and HDFS enables the hybrid framework 

to operate with millions of records with efficiency. 

Parallelized model training over cluster nodes also 

decreases the computation time dramatically, allowing 

near real-time forecasting, which is a necessity in 

operational grid management. 

 Comparative Insights 

a. ARIMA in isolation degrades with high variability. 

b. LSTM and GRU identify nonlinear patterns but take 

enormous training data. 

c. CNN-LSTM enhances local feature recognition but 

might also fail without clustering. 

d. The hybrid model is always superior to all, affirming 

the worth of blending multiple methodologies. 

 Shortcomings: The hybrid model is very accurate, but 

its accuracy is dependent upon historical data quality 

and the need for precise hyperparameter optimization. 

Very rare events or sensor anomalies can still present 

challenge cases for prediction. 

 Practical Implications: The suggested strategy can 

assist grid operators, renewable planners, and smart 

grid systems in making precise real-time forecasts, 

providing optimization of energy dispatch, and 

decreasing dependence on expensive reserve 

generation. 

 

Conclusion 

This paper proposes a complete hybrid framework for wind 

power forecasting incorporating ARIMA, LSTM, GRU, and 

CNN-LSTM models with pattern-based sequence clustering 

through Dynamic Time Warping (DTW) and applies the 

framework to a big data system using Apache Spark and 

HDFS. Through the integration of traditional statistical 

models and powerful deep learning models, the hybrid 

system efficiently extracts linear and nonlinear temporal 

relationships, overcoming the weaknesses of individual 

models. The addition of DTW-based clustering enables the 

model to recognize and learn from homologous temporal 

patterns, improving local predictive accuracy and alleviating 

data heterogeneity. Experimental evaluations on multi-year 

wind speed and power data indicate that the hybrid model 

always performs better than ARIMA, LSTM, GRU, and 

CNN-LSTM alone, with lower MAE and RMSE and higher 

Accuracy, Precision, Recall, and F1-score. In addition, 

distributed execution on a Spark cluster guarantees 

scalability and computational efficiency, thereby making the 

framework appropriate for real-time or near real-time wind 

power forecasting. In summary, the presented methodology 

adds a strong, precise, and scalable solution to the issues of 

renewable energy forecasting, enabling grid reliability, 

operational planning, and smart energy management. 

 

Future Work  

Following the encouraging outcomes of this research, some 

future research avenues are suggested: 

1. Integration with Real-Time Data Streams: Extending 

the framework to process streaming data from 

meteorological sensors and wind turbines using tools like 

Apache Kafka and Spark Streaming, allowing real-time 

model updates and instant forecasting. 

2. Multi-Renewable Energy Forecasting: Expanding the 

hybrid approach to accommodate additional renewable 

sources like tidal and solar energy, developing a generalized 

forecasting platform for mixed renewable grids. 

3. Attention-Based and Transformer Models: Exploration 

of using Transformers and attention mechanisms to better 

capture long-range dependencies and enhance 

interpretability in extremely dynamic conditions. 

4. Adaptive Clustering Methods: Creating adaptive or 

online clustering algorithms to dynamically update sequence 

clustering in real-time, allowing greater model adaptability 

for varying wind patterns. 

5. Hybrid Optimization Methods: Investigating ensemble 

weighting optimization with reinforcement learning or 

metaheuristic techniques for further enhancing forecasting 

performance. 

6. Smart Grid Deployment: Implementing the framework 

within operational smart grids to analyze its effects on load 

balancing, reserve management, and energy cost saving. 

These extensions seek to improve the precision, flexibility, 

and usability of hybrid forecasting models, opening doors to 

efficient, scalable, and real-time predictive systems in 

contemporary renewable energy management. 
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