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time-series model that integrated ARIMA, LSTM, GRU, and CNN-LSTM architectures with pattern-
based sequence clustering. Using a real-world dataset containing 34,080 time-stamped observations
recorded at 15-minute intervals, the research utilized ten meteorological and operational variables,
including wind speed, preliminary power output, wind direction, temperature, humidity, atmospheric
pressure, and rounded turbine measurements, along with YD15, a 15-minute-ahead power target used
for supervised learning. A comprehensive preprocessing workflow—comprising outlier removal,
missing-value interpolation, normalization, and feature engineering—was applied to ensure data
quality. Dynamic Time Warping (DTW) clustering was employed to group similar temporal sequences,
enabling localized model training across diverse wind regimes. The hybrid architecture was deployed
in a distributed environment using Apache Spark, ensuring scalability and high processing throughput.
Experimental evaluation on the dataset demonstrated that the hybrid model consistently outperformed
standalone approaches, achieving lower MAE and RMSE and higher Accuracy, Precision, Recall, and
F1-scores. Overall, the study provided a robust, scalable, and data-driven forecasting solution capable
of capturing both linear and nonlinear wind power dynamics, supporting more reliable smart-grid
operations and sustainable energy management.
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Introduction

Wind power has become one of the cleanest and most promising substitutes to conventional
fossil fuel-based electricity generation. Its growing integration into national and regional
power grids contributes in a major way to curbing carbon emissions and meeting
international clean energy targets (Hanifi et al., 2020) (%1, Nevertheless, because of its
intrinsic intermittency and randomness, the electricity generation from wind farms varies
greatly over a period of time. Such variability presents serious issues in terms of grid
stability, load balancing, and reserve unit commitment planning (Neshat et al., 2021) 231, To
offset such issues, robust wind power forecasting becomes a critical necessity for optimal
power system operation, facilitating forward-thinking decision-making in energy scheduling
and reserve determination.

Conventional time series forecasting techniques, including the use of the Autoregressive
Integrated Moving Average (ARIMA) model, have been the primary methodologies to be
applied in renewable energy forecasting applications (Mohapatra et al., 2023) 22, ARIMA is
particularly suitable for identifying linear relationships and short-order dependencies with
interpretable model parameters and solid baseline predictions (Yang et al., 2022) B3,
Nevertheless, ARIMA and related traditional statistical models are not capable of capturing
nonlinear, chaotic, and non-stationary patterns embedded in meteorological and wind data
(Dhakal et al., 2022) "1, Therefore, their predictive ability weakens under intricate temporal
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Memory (CNN-LSTM) have proven to have robust ability
in learning nonlinear temporal features and long-range
dependencies from large datasets. LSTM and GRU, with
their gates, successfully control sequential information flow,
whereas CNN-LSTM models integrate spatial feature
extraction as well as temporal learning, thus being strong for
high-dimensional time series analysis (Wang et al., 2021)
Bl However, deep learning models tend to be non-
interpretable, need big training sets, and tend to overfit if
trained on heterogeneous temporal sequences without
thorough preprocessing or clustering (X. Huang et al., 2023)
(231 In order to bridge these shortcomings, this research puts
forth a hybrid big data prediction framework that
synergistically combines traditional statistical modeling and
deep learning architectures. The ARIMA is employed to
extract and model linear dependencies and short-term
dynamics in the wind power time series. Later, deep
learning models—LSTM, GRU, and CNN-LSTM—are used
to extract nonlinear and long-term dependencies, allowing
richer temporal dynamics understanding. In addition, to
improve generalization and minimize modeling complexity,
the research uses pattern-based sequence clustering through
Dynamic Time Warping (DTW), which clusters similar time
sequences together (Elsaraiti & Merabet, 2021) 4. The
clustering enables localized training within homogeneous
groups, thus improving model robustness and accuracy
(Sarkar et al., 2023) [,

One of the key differentiating features of this work is its
application in a big data processing context, utilizing the
power of Apache Spark and Hadoop Distributed File
System (HDFS). These tools enable distributed
computation, parallel data processing, and scalable model
training over big wind data, with reduced computational
overhead and near real-time forecasting capabilities (Zhao et
al., 2015) B3 This integration allows the proposed system
to be not only accurate but also scalable and feasible for
industrial use with massive amounts of streaming data
(Lydia et al., 2016) [211,

Key Contributions of the Study

e Design of a Hybrid ARIMA-LSTM-GRU-CNN-
LSTM Model
A coherent architecture integrating statistical methods
and deep learning techniques to appropriately model
both linear and nonlinear temporal relationships in wind
power data.

e Pattern-Based Sequence Clustering with DTW
Integration of Dynamic Time Warping (DTW) for
grouping comparable temporal patterns, which
improves the learning ability of deep networks by
concentrating on localized as well as homogeneous data
segments.

e Big Data-Driven Forecasting Pipeline
Designing a full-stack big data architecture using
Apache Spark and Hadoop to facilitate distributed
computation, effective data preprocessing, and model
scalability for large wind datasets.

e Holistic Performance Analysis
Structured evaluation through multiple performance
metrics — Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), Accuracy, Precision, Recall, and
Fl-score — to present an overall insight into model
performance on both regression and classification
fronts.

https://www.computersciencejournals.com/ijcai

In effect, this hybrid model fills the middle ground between
conventional statistical models and sophisticated deep
learning models and solves the computational issues
presented by big wind data. By integrating ARIMA's
interpretability with representational strengths of LSTM,
GRU, and CNN-LSTM in a big data setting, this research
presents a scalable, high-accuracy, and strong forecasting
model for next-gen smart grid systems and renewable
energy optimization.

Research Objectives

1. To implement robust data preprocessing techniques,
including outlier detection, missing value interpolation,
and feature engineering, to ensure high-quality input for
accurate wind power forecasting.

2. To apply the ARIMA model for capturing linear
patterns and short-term dependencies in wind speed and
wind power time series data, serving as a baseline
forecasting approach.

3. To develop and evaluate LSTM networks for
modeling long-term dependencies and nonlinear
temporal patterns in wind speed and power data,
improving prediction accuracy over traditional
methods.

4. To implement GRU models as a computationally
efficient alternative to LSTM, assessing their
performance in capturing sequential dependencies
while reducing training complexity.

5. To design a CNN-LSTM hybrid model that integrates
convolutional feature extraction with recurrent
sequence learning, enhancing the prediction of both
short-term fluctuations and long-term temporal patterns
in large-scale wind datasets.

Literature Review

Classical Models of Forecasting

Classical statistical model approaches to forecasting,
specifically the Autoregressive Integrated Moving Average
(ARIMA) and its seasonal counterpart, the Seasonal
ARIMA (SARIMA), have been long-established pillar
methods in the analysis and forecasting of time series. These
models are highly regarded for their mathematical beauty,
interpretability, and performance in representing linear
associations and temporal dependencies in data (Ailliot &
Monbet, 2012) 11, In the case of wind power and wind speed
forecasting, ARIMA has been widely utilized to fit
autoregressive and moving average processes, successfully
forecasting short-term fluctuation by relying on past
patterns. SARIMA also expands ARIMA's functions in that
it includes seasonal differencing and parameters in modeling
periodic patterns, which are crucial in capturing repetitive
wind patterns resulting from diurnal or seasonal atmospheric
cycles. This renders SARIMA very applicable in situations
where wind power generation shows regular periodic
variations in particular time frames et al (Singh &
Mohapatra, 2019) 26,

Yet, even though they have been well-demonstrated
strengths, traditional models like ARIMA and SARIMA are
challenged considerably when dealing with real-world,
complicated meteorological data. Wind power generation
and wind speed are nonlinear, non-stationary, and random
because they are based on several interacting physical and
environmental variables such as temperature, humidity, air
pressure, and terrain (Duran et al., 2007) 1. Such models
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presume linearity and stationarity, i.e., they are based on the
assumption that statistical parameters like mean and
variance do not change over time — an assumption most
frequently violated in dynamic atmospheric processes. Thus,
their predictive ability declines when used for modeling
sudden changes, turbulence, or chaotic wind patterns, which
cannot be properly modeled using linear relationships.
Further, the dependency on heavy manual parameter fine-
tuning (p, d, g, and seasonality parameters) and the fact that
they cannot learn automatically complicated temporal
relationships restrict their ability to adapt to changing wind
patterns (X. Liu & Zhou, 2024) 2%, Furthermore, ARIMA
and SARIMA models are generally constructed for
univariate analysis, i.e., accounting for a single dependent
variable, like wind speed or power, at a time. Conversely,
actual wind power forecasting in real world settings
frequently entails multivariate interdependencies —
interactions among several meteorological variables that
impact wind generation at the same time (Akcay & Filik,
2017) 481, Including these relationships in ARIMA models
calls for additional preprocessing and modeling complexity,
adding computational load and diminishing scalability with
large datasets (Grigonyté & Butkeviciiité, 2016) 22, In
addition, classical models do not handle the large volume of
high-dimensional and high-frequency data produced by
contemporary wind farms well, and therefore they are not fit
for big data settings without substantial reworking (Duan et
al., 2021) B, Their non-parallelizable and sequential nature
is also problematic for distributed processing, which is
essential for real-time forecasting applications in smart grid
systems.

While ARIMA and SARIMA models offer a good
foundation for capturing and modeling linear temporal
structures, they lack the ability to model the nonlinear, high-
dimensional, and rapidly varying nature of wind power data
(Radziukynas & Klementavicius, 2014) 4, Their inability
to detect nonlinear relationships and adjust to dynamic
temporal patterns restricts their forecasting accuracy and
stability in practical conditions. These constraints have
pushed researchers to adopt hybrid modeling solutions that
combine traditional statistical methods with sophisticated
deep learning architectures. Through the use of the
explanatory power of ARIMA and the learning capacity for
patterns in neural networks, hybrid models seek to address
the shortcomings of conventional methods and deliver more
precise, scalable, and data-driven forecasting tools
applicable to contemporary renewable energy management
systems.

Deep Learning Models

Deep learning algorithms have become strong competitors
to conventional statistical techniques in wind speed and
power prediction because of their potential to learn
sophisticated nonlinear relationships and temporal structures
directly from data. Unlike classical methods based on the
assumption of linearity and stationarity, deep learning
models can learn complex relationships and hierarchical
patterns automatically, allowing more precise and resilient
prediction under dynamic meteorological conditions (K.
Chen & Yu, 2014) Bl. Of these, Long Short-Term Memory
(LSTM) networks have received considerable interest for
having the capability of dealing with long-term
dependencies in sequence data. With their distinctive gate
mechanisms—input, forget, and output gates—LSTMs
efficiently overcome the vanishing gradient problem
plaguing traditional Recurrent Neural Networks (RNNS),
enabling them to keep important information over large time
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horizons. This renders them especially well-suited to
modeling wind speed and power temporal change, where
long-term atmospheric tendencies and lagged impacts are
dominant. Besides LSTMSs, Gated Recurrent Units (GRUSs)
have been very popular for their computational effectiveness
and smaller footprint. GRUs require fewer gates and
parameters while holding similar learning ability, thus
allowing training to happen in less time and with less
memory usage. This renders GRUs most suitable for big
wind datasets and real-time forecasting applications in
which computational memory and processing speed are
paramount. LSTM and GRU networks equally have the
capability to model sequence data, identify complex
temporal correlations, and learn to accommodate non-
stationary patterns that are inherent in wind dynamics.

To further improve forecasting accuracy, Convolutional
Neural Network-Long Short-Term Memory (CNN-LSTM)
hybrid models have been created in order to leverage the
complementary advantages of convolutional and recurrent
architectures. Within such hybrids, convolutional layers
initially yield spatial and local temporal features from
multivariate wind information, essentially capturing short-
term oscillations and localized interdependence. These
identified features are subsequently fed into LSTM layers,
which capture long-term temporal dynamics and trend
developments (B. Huang et al., 2021) . Such hierarchical
learning enables CNN-LSTM models to comprehend both
micro-level changes and macro-level temporal trends,
making them exceedingly powerful in handling elaborate,
high-dimensional time series such as wind power
information.

Empirical evidence repeatedly demonstrates that deep
learning and hybrid architectures excel over conventional
statistical models in terms of forecasting accuracy and
resilience. Their capacity to learn from raw, unstructured, or
high-frequency data bypasses the requirement for heavy
manual feature engineering (Demirtop & Sevli, 2024) [,
Additionally, these models can be readily adapted for
multivariate forecasting by including other meteorological
variables like temperature, pressure, and humidity to
account for the multifactorial nature of wind generation.
More advanced training methods, including dropout
regularization and adaptive optimization algorithms, also
increase their stability and generalization (Trebing &
Mehrkanoon, 2020) 281,

In the deep learning frameworks—particularly LSTM,
GRU, and CNN-LSTM hybrids—lie a key shift in wind
forecasting studies. They overcome the shortcomings of
traditional methods by detecting nonlinear relationships,
addressing long-term temporal patterns, and optimizing
large-scale data processing. Their scalability, flexibility, and
better predictive accuracy render them invaluable tools for
contemporary renewable energy prediction, facilitating
smarter grid operation, effective resource planning, and
enhanced wind energy integration into green power grids.

2.3 Hybrid and Big Data Forecasting Research

Current research has considered hybrid forecasting models
that combine ARIMA with deep learning to take advantage
of the strengths of both linear and nonlinear models. Hybrid
methods have demonstrated better results than standalone
models. Nonetheless, the majority of present research
utilizes relatively small data sets and does not have efficient
data processing strategies for large-scale data, which is
paramount considering the enormous temporal data that
current wind farms produce. Moreover, there is little
investigation on sequence clustering methods, e.g., Dynamic
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Time Warping (DTW), to cluster alike temporal sequences
and limit heterogeneity, which may increase localized
model learning and prediction performance. All of them also
fail to consider the distributed and architectural
requirements for big data environments computationally,
and hence there is a gap in scalable and real-time
forecasting solutions.

Research Gaps

With advancements in hybrid and deep learning-based
forecasting, there are still a number of important gaps.
Firstly, there is no available hybrid ARIMA-deep learning
framework, which is optimized for scalability in big data, to
apply to large-scale wind farm data. Second, pattern-based
sequence clustering for capturing intra-sequence similarities
has yet to be investigated in wind forecasting, although it
can enhance model generalization and minimize prediction
errors. Lastly, comparative studies involving multiple deep
learning architectures—LSTM, GRU, and CNN-LSTM—
within a hybrid and scalable framework have been lacking.
Filling these gaps inspires the creation of a holistic, hybrid,
and big data-empowered forecasting framework that is able
to provide accurate, scalable, and computation-efficient
wind power forecasts.

Proposed Methodology

Dataset descriptions

The dataset contains 34,080 time-stamped observations
recorded at 15-minute intervals, representing operational
and meteorological conditions of a wind power system. It
includes ten variables: timestamp (DATATIME), wind
speed (WINDSPEED), preliminary turbine power output
(PREPOWER), wind direction (WINDDIRECTION),
temperature, humidity, and atmospheric pressure, along with
rounded wind speed and rounded power measurements
available for most records. The dataset also provides YD15,
a 15-minute-ahead power output target available for a subset
of samples, making it suitable for supervised short-term
forecasting. Overall, the dataset combines environmental
features and turbine response variables, enabling
comprehensive modeling of wind behavior, power
generation dynamics, and predictive model development for
renewable energy forecasting.

3.2 Data Preprocessing

Proper preprocessing is crucial to support high-accuracy

forecasting:

e Missing Values: Missing values in the dataset are
handled with linear and spline interpolation methods to
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ensure temporal consistency, avoiding discontinuities
that would compromise model performance.

e  Outlier Detection: Erroneous or anomalous values are
detected through Z-score and Interquartile Range (IQR)
techniques. Outliers so detected are replaced with local
mean smoothing, retaining underlying trends while
eliminating noise.

e Normalization: Features are all scaled by Min-Max
normalization for compatibility with deep learning
models and for faster convergence in training.

e Feature Engineering: New features are created to
increase predictive capability, such as lag variables to
model temporal dependency, rolling averages to
eliminate short-term volatility, and cyclical timestamp
features (e.g., hour of day, day of week) to model
seasonality and diurnality.

Min-Max Normalization
xi - xmin

Xmax ~ *min

Model Framework

The hybrid forecasting framework combines classical

statistical modeling and deep learning architectures:

e ARIMA: Models linear trends and short-term
dependencies in wind time series and serves as a solid
baseline.

e Pattern-Based Clustering: Patterns of similarity are
identified by clustering sequences with Dynamic Time
Warping (DTW). Localized model training within the
clusters enhances generalization and minimizes
prediction errors in heterogeneous data segments.

Deep Learning Models

e LSTM: Models long-term dependencies and nonlinear
temporal dynamics.

e GRU: Provides computational efficacy at the expense
of predictive accuracy, ideal for large data.

e CNN-LSTM: Merges convolutional layers for local
feature learning with LSTM layers for sequential
learning, detecting both short-term volatility and long-
term temporal structures.

e Hybrid Ensemble: Forecasts from ARIMA and deep
learning models are averaged using weighted average,
where the weights are tuned by grid search or genetic
algorithm to enhance overall forecasting performance.

Data Gathering

Pre-Processing

&%

Proposed ARIMA-DTW-LSTM-GRU-CNN-LSTM Methodology

Data Ingestion
and storage

.

Pattern-Based
Clustering
(DTW)

Forecasting
(ARIMA)

’M-B B

(LSTM-GRU-CNN  Ensemble

@
~@

Learning Hybrid

-LSTM)

¥

Performance
Analysis

Fig 1: Proposed Architecture of MDTWHb
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Figure 1 illustrates the general process of the suggested
Hybrid Wind Power Forecasting Framework, encompassing
traditional statistical and deep learning techniques in a big
data platform. The steps start with data ingestion and
collection, where wind speed, power generation, and
meteorological data like temperature, humidity, and air
pressure are collected from various wind farm locations.
These data are stored in cloud-based storage with the use of
the Hadoop Distributed File System (HDFS) for scalability
and fault tolerance. Preprocessing involves missing value
handling, outlier removal, normalization, and feature design
for preparing high-quality inputs for modeling.

Preprocessed data is then subjected to Dynamic Time
Warping (DTW)-based pattern clustering, which recognizes
and aggregates similar temporal patterns for localized model
learning. In each cluster, more than one model—ARIMA,
LSTM, GRU, and CNN-LSTM—are trained to identify both
linear and nonlinear temporal relationships in wind power
data. Predictions from these models are subsequently
ensembled through weighted ensemble approach optimized
with grid search to reduce errors in forecasting. The last step
is the use of performance metrics such as MAE, RMSE,
Accuracy, Precision, Recall, and F1-score to evaluate
performance for efficient, scalable, and high-accuracy
prediction in real-time smart grid systems.

ARIMA Forecasting

Ye=CH@1¥e-1 + Ppyezt ot PpYip + 016+ F Gperg + 6

The ARIMA equation models a time series Yras a
combination of past values and past errors to capture linear

temporal dependencies. Here, ‘ibz'represents the influence of

previous observations (autoregressive part), IEJ'represents the
effect of past errors (moving average part), “is a constant

term, and Stis the random error at time t. This model
effectively forecasts short-term trends in stationary time
series data by linking current values with their historical
behavior.

Dynamic Time Warping (DTW) Distance

The Dynamic Time Warping (DTW) distance measures the
similarity between two time series sequences, even if they
vary in speed or length. In the equation

K
DTW(Q,C) = min (qp —c)?

Q = [qqujl-'- ] q;g] and C= (Cl, Cas ""CKj
represent two time series sequences being compared. The
DTW algorithm aligns these sequences by stretching or
compressing their time axes to find the optimal match that
minimizes the cumulative distance between corresponding
points. This allows sequences with similar patterns but
different time shifts or lengths to be effectively compared.
In this study, DTW is used to cluster similar temporal
patterns in wind power data, enabling localized learning and
improving forecasting accuracy in the hybrid model.
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Algorithm 1: Hybrid Wind Power Forecasting Using
ARIMA-LSTM-GRU-CNN-LSTM with DTW
Clustering

Input

e Time series dataset D = {(tuPuW; M)}

Wz‘, power output P i, and
meteorological variables Mot timestamp =

e Model parameters for ARIMA, LSTM, GRU, and
CNN-LSTM.

containing wind speed

Output

-

P k

Forecasted wind power values * t+&for future time steps

Steps

1. Collect wind speed, power output, and meteorological
data from multiple sensors and sources.

2. Handle missing values using interpolation techniques to
maintain temporal continuity.

3. Detect and correct outliers using Z-score and IQR-
based smoothing.

4. Normalize features through Min-Max scaling for
consistent model input.

5. Generate lag features, rolling averages, and time-based
cyclical features for richer temporal representation.

6. Apply Dynamic Time Warping (DTW) to compute
similarity between time series segments.

7. Cluster similar sequences based on DTW distances to
form homogeneous temporal groups.

8. Train ARIMA models on clustered data to capture
linear and short-term trends.

9. Train LSTM, GRU, and CNN-LSTM models to learn
nonlinear and long-term dependencies.

10. Combine the outputs of all models using a weighted
averaging ensemble strategy.

11. Optimize ensemble weights using a Grid Search
Strategy to minimize overall forecasting error (MAE,
RMSE).

12. Evaluate model performance using MAE, RMSE,
Accuracy, Precision, Recall, and F1-score.

13. Select the best-performing hybrid configuration for
final wind power forecasting.

Strategy Explanation

The algorithm employs a hybrid ensemble learning strategy
combined with DTW-based sequence clustering. DTW
clustering groups similar temporal sequences to improve
localized learning, reducing heterogeneity in training data.
The predictions from ARIMA, LSTM, GRU, and CNN-
LSTM are fused using a weighted averaging ensemble, with
weights optimized using grid search (not genetic
algorithms), ensuring deterministic, reproducible, and
computationally efficient model blending for large-scale
wind forecasting in a big data environment.

Big Data Implementation

In order to process large-scale wind data sets in an efficient
manner, the system is deployed on Apache Spark with
PySparkMLlIib. Data storage and management are managed
by the Hadoop Distributed File System (HDFS), allowing
distributed storage on cluster nodes. Model training and
testing are parallelized over Spark executors, supporting
computation and scalable performance against large data
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sets, and real-time or near-real-time deployment becomes
possible.

Performance Metrics

Model performance is evaluated using a combination of
regression and classification metrics

Regression Metrics

a. MAE (Mean Absolute Error)

MAE=-3 1y, — 7 |

b. RMSE (Root Mean Square Error)

1 -~
RMSE = /;Z(yi —)?

Classification Metrics: When wind speed or power is
categorized into discrete classes:

Accuracy, Precision, Recall, and Fl-score provide a
comprehensive assessment of model performance across
different error dimensions.

3.6 Experimental Setup

The experimental setup is such that the hybrid model is

tested under real and scalable settings:

e Hardware Configuration: The experiments are
performed on a 16-node Spark cluster with each node
having 128 GB of RAM and NVIDIA V100 GPUs for

Results
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high-performance deep learning training so that there is
both computationally efficient as well as scalable
processing.

e Software Environment: The project employs Python
3.10, TensorFlow 2.12 for deep learning models,
PySpark for distributed data processing, and Hadoop
3.3 for distributed data storage.

e Data Splitting Strategy: In order to ensure temporal
consistency, the dataset is split chronologically into
70% training, 20% validation, and 10% testing sets.
This avoids data leakage and mimics real-world
forecasting situations.

e Hyperparameter Tuning: Model parameters, such as
learning rate, layers, hidden units, and batch size, are
tuned via random search and Bayesian optimization
combined, trading-off accuracy and computational
resources.

e Model Performance Testing: Rolling-window cross-
validation is employed to simulate actual real-time
forecasting scenarios, enabling continuous testing of
model performance on sequential data chunks. This
provides resilience and flexibility of the hybrid system
to changing wind conditions over time.

This configuration guarantees that the hybrid model that has
been proposed is not only effective but also scalable and
computationally light, an attribute that makes it suitable for
deployment in real-world smart grid and wind farm settings.
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Mean Squared Error (Loss)

0.0010
0 5 10

Hybrid Model Training & Validation Loss

o ¥‘_—\/\f
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=== Training Loss
= \alidation Loss

15 20 25

Fig 2: Training and Validation Loss Curve of the Hybrid Forecasting Model

This figure 2 illustrates the convergence behavior of the
proposed hybrid forecasting model across training epochs.
The training and validation loss curves show a consistent
downward trend, indicating effective learning and minimal
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Fig 3: Convergence Comparison of Deep Learning Models for Wind Power Forecasting

This figure 3 compares the validation loss convergence of
the CNN-LSTM, LSTM, and GRU models over 100
training epochs. GRU and LSTM exhibit faster and
smoother convergence, achieving lower error levels than the

more complex CNN-LSTM architecture. The results
highlight that recurrent models, particularly GRU, provide
more stable and efficient learning for wind power time-
series forecasting.
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Fig 4: Forecast Comparison: Hybrid Ensemble vs. Individual Model Components (300-Hour Window)

This figure 4 presents a detailed comparison between the
actual wind power values and the forecasts produced by the
hybrid ensemble and its individual ARIMA, LSTM, GRU,

ensemble aligns most closely with the real data, particularly
during rapid fluctuations and peak variations. The results
highlight how model complementarity enhances overall

and CNN-LSTM components. While each standalone model forecasting accuracy within  short-term  operational
captures certain temporal characteristics, the hybrid windows.
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Fig 5: Residual Analysis of the Hybrid Forecasting Model

This figure 5 presents the residual behavior of the hybrid
model through a time-series plot and corresponding error
distribution. The residuals oscillate closely around zero,
indicating unbiased predictions with only a few isolated

spikes during abrupt wind fluctuations. The near-normal
error distribution with a mean close to zero further confirms
stable model performance and minimal systematic bias in
forecasting.
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Fig 6: Model Performance Comparison

This figure 6 compares the predictive accuracy of ARIMA,
LSTM, GRU, and CNN-LSTM models against the final
hybrid ensemble using scatter plots of actual versus
predicted wind power. Deep learning components
demonstrate improved alignment with the ideal diagonal
line, while the hybrid ensemble shows the strongest

Using Actual vs. Predicted Power Scatter Plots

clustering and lowest dispersion, reflected in its highest

R~ and lowest RMSE. These results confirm that combining
linear and nonlinear models significantly enhances overall
forecasting accuracy.
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Fig 7: Cumulative Distribution Function (CDF) of Absolute Forecasting Errors

This figure 7 illustrates the CDF of absolute prediction
errors for the hybrid forecasting model, highlighting the
proportion of errors within specific thresholds. The model

achieves strong reliability, with 80% of errors below 470
kW and 95% below 974 kW, as indicated by the vertical
dashed lines. The steep rise in the curve demonstrates that
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most errors remain small, confirming the model's consistent and stable predictive accuracy.
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Fig 8: RMSE Comparison across Forecasting Models

This Figure 8 compares the RMSE values of ARIMA,
CNN-LSTM, LSTM, GRU, and the proposed Hybrid
Ensemble model. While each deep learning model improves
upon the baseline ARIMA, the hybrid ensemble achieves

ARIMA results

the lowest RMSE (535 kW), demonstrating superior
forecasting precision. The clear performance gap highlights
the effectiveness of combining linear and nonlinear learning
components into a unified hybrid framework.
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Fig 9: Actual vs. Predicted Wind Power on Training and Test Sets

This figure 9 compares actual and predicted wind power
values for both the training subset (first 1000 samples) and
the full test dataset. The close overlap between the curves in
the training plot demonstrates strong model learning, while

~81~

the test plot shows stable generalization despite the presence
of sharp spikes in real wind power. Overall, the hybrid
model effectively captures underlying temporal patterns
across both seen and unseen data.
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Fig 10: Scatter Plot Comparison of Actual vs. Predicted Wind Power for Training and Test Sets

This figure 10 compares prediction performance on the
training and test sets using scatter plots of actual versus
predicted wind power. The training set shows a tight

clustering around the ideal diagonal line with high R and

low error metrics, indicating strong learning. The test set
displays wider dispersion but still maintains a consistent
upward trend, demonstrating that the model generalizes well
despite increased variability in real-world wind patterns.
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Fig 11: Training and Test Residual Behavior and Distribution Analysis

This figure 1lanalyzes the residual patterns of the hybrid
forecasting model across training and test sets using time-
series plots and distribution histograms. Residuals for both
sets fluctuate around zero, with the training set exhibiting
lower variance and tighter normal-like behavior compared

to the test set. The histograms further confirm that errors are
centered with limited skewness, indicating stable, unbiased,
and well-generalized model performance across different
data conditions.
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Fig 12: Q Plots of Training and Test Residuals

This figure 12 presents Q-Q plots for training and test
residuals to assess normality and error distribution behavior.
Both plots show noticeable deviations from the reference
line in the tails, indicating the presence of extreme values

caused by abrupt wind fluctuations. Despite these tail
deviations, the central regions align reasonably well,
confirming that the hybrid model maintains stable residual
behavior for the majority of predictions.
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Fig 13: Autocorrelation (ACF) and Partial Autocorrelation (PACF) of Training and Test Residuals

This figure 13 evaluates the autocorrelation structure of
model residuals using ACF and PACF plots for both
training and test sets. Training residuals show near-zero
autocorrelation across all lags, indicating that the hybrid
model successfully captures most temporal dependencies

during learning. Test residuals exhibit modest short-lag
correlations but remain largely unstructured, confirming that
the remaining errors behave like random noise and
validating the model’s forecasting adequacy.

~83~


https://www.computersciencejournals.com/ijcai

International Journal of Computing and Atrtificial Intelligence

https://www.computersciencejournals.com/ijcai

7000

6000

5000

4000

MAE (k)

3000
2000

Test MAE by Power Range (Max: 19771 kW)
1000
n=r26z g

"» A o
& g N
© P S N C B &

Actual Power Range (kW)

Absolute Error (kW)

Test Set: Absolute Error vs Actual Power

== Trend: y=0132x4+460.17

10000

8000

6000

4000

2000

0 2500 5000 7500 10000

Actual Power (kW)

12500 15000 17500 20000

Fig 14: Error Behavior across Power Ranges and Relationship between Absolute Error and Actual Power

This figure 14 examines how forecasting errors vary with
actual power output by analyzing MAE across predefined
power ranges and plotting absolute errors against actual
values. Lower power levels exhibit smaller and more stable
errors, while higher power outputs show larger deviations

due to increased volatility and peak complexity. The
positive trend in the scatter plot further indicates that
forecasting difficulty grows with power magnitude,
reflecting the nonlinear nature of extreme wind events.
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Fig 15: Performance Metric Comparison Between Training and Test Sets

This figure 15 compares R_, MAE, and RMSE metrics for
the training and test sets to evaluate model learning and
generalization. The training set shows stronger performance
across all metrics, indicating effective model fitting, while
the test set reflects increased error due to real-world

variability and unseen patterns. Overall, the comparison
highlights that although performance drops on the test set,
the model maintains acceptable predictive accuracy and
robustness.

Table 1: Comparative Study of Wind Power Forecasting Methods

Author & Year Method / Model Used Key Findings Gap ldentified
(Zhang et al., . ) Improved short-term forecasting accuracy Lacked clustering and big-data
2022) M Hybrid ARIMA-LSTM over standalone models. scalability.
(El-Saieed &

Mosallam, 2024)
[10]

CNN-LSTM Spatial-Temporal
Model

Captured spatial correlations and long-term
dependencies effectively.

Struggled with non-stationary and
rapidly fluctuating wind patterns.

(Thiyagarajan et
al., 2025) 271

Transformer-Based Forecasting

Achieved high accuracy using attention
mechanisms.

Computationally expensive; no
distributed big-data support.

Proposed Hybrid
Model (2025)

ARIMA + LSTM + GRU + CNN-
LSTM with DTW Sequence

Clustering in Apache Spark

Achieved superior accuracy with lower
MAE/RMSE and improved classification
metrics using scalable big-data processing.

Could be enhanced with probabilistic
uncertainty modeling and adaptive
online learning.
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This table 1 compares three recent wind power forecasting
approaches, highlighting differences in modeling techniques
and performance. Hybrid ARIMA-LSTM and CNN-LSTM
models improved accuracy but lacked mechanisms to handle
non-stationary patterns or large-scale deployment. The
Transformer-based method delivered high accuracy but
remained computationally heavy, showing the need for a
scalable hybrid solution like the proposed model.

Discussion

The experimental results show various

observations about hybrid wind forecasting:

o Hybrid Modeling Benefit: The fusion of ARIMA with
LSTM, GRU, and CNN-LSTM exploits complementary
strengths—Ilinear trend identification from ARIMA and
nonlinear, long-term sequence learning from deep
models. Such an integration brings down the prediction
error by a large margin compared to single models.

e Role of Pattern-Based Clustering: DTW-based
clustering facilitates localized learning by clustering
sequences with comparable temporal dynamics. This
alleviates heterogeneity among training subsets,
enabling deep learning models to learn repeating
patterns more effectively and reduce overfitting,
particularly under highly volatile regimes.

e CNN-LSTM for Spatial-Temporal Features: The
hybrid model takes advantage of CNN-LSTM's
capability of extracting local temporal patterns prior to
passing them through recurrent layers. The hierarchical
learning captures short-term changes and also maintains
long-term dependencies, enhancing overall accuracy of
prediction.

e Scalability and Big Data Implementation: Utilizing
Apache Spark and HDFS enables the hybrid framework
to operate with millions of records with efficiency.
Parallelized model training over cluster nodes also
decreases the computation time dramatically, allowing
near real-time forecasting, which is a necessity in
operational grid management.

e Comparative Insights

ARIMA in isolation degrades with high variability.

LSTM and GRU identify nonlinear patterns but take

enormous training data.

c. CNN-LSTM enhances local feature recognition but
might also fail without clustering.

d. The hybrid model is always superior to all, affirming
the worth of blending multiple methodologies.

e Shortcomings: The hybrid model is very accurate, but
its accuracy is dependent upon historical data quality
and the need for precise hyperparameter optimization.
Very rare events or sensor anomalies can still present
challenge cases for prediction.

e Practical Implications: The suggested strategy can
assist grid operators, renewable planners, and smart
grid systems in making precise real-time forecasts,
providing optimization of energy dispatch, and
decreasing  dependence on  expensive  reserve
generation.

important

o

Conclusion

This paper proposes a complete hybrid framework for wind
power forecasting incorporating ARIMA, LSTM, GRU, and
CNN-LSTM models with pattern-based sequence clustering

https://www.computersciencejournals.com/ijcai

through Dynamic Time Warping (DTW) and applies the
framework to a big data system using Apache Spark and
HDFS. Through the integration of traditional statistical
models and powerful deep learning models, the hybrid
system efficiently extracts linear and nonlinear temporal
relationships, overcoming the weaknesses of individual
models. The addition of DTW-based clustering enables the
model to recognize and learn from homologous temporal
patterns, improving local predictive accuracy and alleviating
data heterogeneity. Experimental evaluations on multi-year
wind speed and power data indicate that the hybrid model
always performs better than ARIMA, LSTM, GRU, and
CNN-LSTM alone, with lower MAE and RMSE and higher
Accuracy, Precision, Recall, and F1-score. In addition,
distributed execution on a Spark cluster guarantees
scalability and computational efficiency, thereby making the
framework appropriate for real-time or near real-time wind
power forecasting. In summary, the presented methodology
adds a strong, precise, and scalable solution to the issues of
renewable energy forecasting, enabling grid reliability,
operational planning, and smart energy management.

Future Work

Following the encouraging outcomes of this research, some
future research avenues are suggested:

1. Integration with Real-Time Data Streams: Extending
the framework to process streaming data from
meteorological sensors and wind turbines using tools like
Apache Kafka and Spark Streaming, allowing real-time
model updates and instant forecasting.

2. Multi-Renewable Energy Forecasting: Expanding the
hybrid approach to accommodate additional renewable
sources like tidal and solar energy, developing a generalized
forecasting platform for mixed renewable grids.

3. Attention-Based and Transformer Models: Exploration
of using Transformers and attention mechanisms to better
capture  long-range  dependencies and  enhance
interpretability in extremely dynamic conditions.

4. Adaptive Clustering Methods: Creating adaptive or
online clustering algorithms to dynamically update sequence
clustering in real-time, allowing greater model adaptability
for varying wind patterns.

5. Hybrid Optimization Methods: Investigating ensemble
weighting optimization with reinforcement learning or
metaheuristic techniques for further enhancing forecasting
performance.

6. Smart Grid Deployment: Implementing the framework
within operational smart grids to analyze its effects on load
balancing, reserve management, and energy cost saving.
These extensions seek to improve the precision, flexibility,
and usability of hybrid forecasting models, opening doors to
efficient, scalable, and real-time predictive systems in
contemporary renewable energy management.
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