
~ 59 ~

International Journal of Engineering in Computer Science 2019; 1(2): 59-66

E-ISSN: 2663-3590

P-ISSN: 2663-3582

IJECS 2019; 1(2): 59-66

Received: 24-05-2019

Accepted: 25-06-2019

Neeraj Rathore

Assistant Professor,

Shri G.S. Institute of

Technology & Science, Indore,
Madhya Pradesh, India.

Jyoti Rathore

PhD Scholar, Jaypee

University of engineering &

technology, Guna, Madhya

Pradesh, India.

Correspondence

Neeraj Rathore

Assistant Professor, Shri G.S.

institute of technology &

science, Indore, Madhya

Pradesh, India.

Efficient checkpoint algorithm for distributed system

Neeraj Rathore and Jyoti Rathore

DOI: https://doi.org/10.33545/26633582.2019.v1.i2a.22

Abstract
The Grid is rapidly emerging as the means for coordinated resource sharing and problem solving in
multi-institutional virtual organizations while providing dependable, consistent, pervasive access to
global resources. The emergence of computational Grids and the potential for seamless aggregation and
interactions between distributed services and resources, has led to the start of new era of computing.
Tremendously large number and the heterogeneous nature of Grid Computing resource make the
resource management a significantly challenging job. Resource management scenarios often include
resource discovery, resource monitoring, resource inventories, resource provisioning, fault isolation,
variety of autonomic capabilities and service level management activities. Out of this fault tolerance
has become the main topic of research as till date there is no single system that can be called as the
complete system that will handle all the faults in grids. Checkpointing is one of the fault-tolerant
techniques to restore faults and to restart job fast. The algorithms for checkpointing on distributed
systems have been under study for years. These algorithms can be classified into three classes:
coordinated, uncoordinated and communication-induced algorithms. In this paper, a checkpointing
algorithm that has minimum checkpointing counts equivalent to periodic checkpointing algorithm has
been proposed. For relatively short rollback distance at faulty situations and produces better
performance rather than other algorithms in terms of task completion time, in both fault-free and faulty
situations. This algorithm has been implemented in Alchemi.NET because it did not currently support
any fault tolerance mechanism.

Keywords: Checkpointing, Fault-Tolerance, Alchemi.NET, Grid Computing, GridSim

1. Introduction

Grid is a type of distributed system that supports the sharing and coordinated use of

geographically distributed and multi- owner resources independently from their physical type

and location in dynamic virtual organizations that share the same goal of solving large-scale

applications.

2. Literature survey
The last decade has seen a considerable increase in commodity computer and network
performance, mainly as a result of faster hardware and more sophisticated software. The
early efforts in Grid Computing started as a project to link supercomputing sites, but now it
has grown far beyond its original intent. In fact, there are many applications that can benefit
from the grid infrastructure, including collaborative engineering, data exploration, high
throughput computing, and of course distributed supercomputing.

2.1 Comparison between different checkpoint schemes

Based on the literature survey following comparisons have been made:

The comparison between disk based and disk less checkpointing for distributed and parallel

system in certain parameter is described in Table 1.

Table 1: On disk and disk less checkpointing for parallel and distributed system [22-40]

Parameter Disk Based Diskless

Latency time High Low

CPU overhead High High

Memory requirement Low high

Stable storage requirement High Low

Toleration of wholesale failure Yes No

Reliability High Low

Efficiency Low High

Addition hardware Not Required Additional processors

Portability High Low

https://doi.org/10.33545/26633582.2019.v1.i2a.22

International Journal of Engineering in Computer Science http://www.computersciencejournals.com/

~ 60 ~

The comparison between Disk-based and Memory-based Checkpoint in certain parameter is described in Table 2.

Table 2: Comparison of Disk-based and Memory-based Checkpoint Schemes [22-42]

Fault tolerant protocols Double in Memory Double in Disk

Shrink/Expand Yes Yes

Portability Low Low

Foolproof No No

Diskless Yes No, local disk

Halts job No No

Bottleneck No No

Require backup processors Not Necessarily Not Necessarily

Transparent checkpoint No No

Synchronized checkpoint Yes Yes

Automatic restart Yes Yes

Table 3: Comparative studies of different checkpointing schemes [10-42]

Check pointing

Methods

Uncoordinated

Check pointing

Coordinated

Check pointing

Communication

Induced

Diskless check

pointing

Double Check

pointing

Efficiency
High for small

process
Low Low High High

Performance Low Low Low
Higher for distributed

applications
Faster

Portability High High High Low Low

Cost High

Low, negligible

for low memory

usage application

High High Very High

Scalable No Minimal
Not scale for large

number of processors

Difficult to scale to

large number of

processors

Highly

Flexibility Low

All processes

Save their states at

the same time

Process can be moved

from one node to

another by writing the

process image directly

to a remote node

Replace stable

storage with memory

and processor

redundancy

Handle fault at a time

and Availability of one

checkpoint in case the

other is lost.

Overhead

Large Storage,

Very high Log

management and

Work in small

Process

Minimum storage

overhead And

negligible

overheads in

failure-free

Executions.

High latency and

Memory and disk

overhead

High memory

overhead for storing

checkpoints

Low memory

overhead

Advantages

Most Convenient

and Save their

checkpoints

Individually

Not suffer from

rollback

propagations and

Processes

Save their state

together

Preventing domino

effect, piggybacking

And information

Of regular message

exchanged by the

processes

Improve performance

in distributed

/parallel applications

and Process

migration save

process image

Uses in small memory

footprint on large

number of processors.

ex- scientific

applications

Recovery

Checkpoint

Of the faulty

process is restored

Processes stop

regular message

activity to take

their checkpoints

and coordinated

way to analyze and

restore the last set

of

Checkpoints

Needed large number

of forced checkpoints

nullify the benefit of

autonomous local

checkpoints Using new

process to restore the

process image after

failure

Using parity/backup

and extra processors

for storing parity as

well as replace failed

application

processors.

Through automatic

restart and

synchronization by

two identical

checkpoint buddy

processors to provide

foolproof fault

tolerance

Disadvantages

Unsuitable,

Domino Effect,

Wastage memory,

unbounded &

complex

Garbage collection

Consistent

checkpoint and

Large latency for

saving the

checkpoints

storage

Deteriorated parallel

performance &

Requires standby

processors

Communication

bottleneck

Depend on a central

reliable storage and

required Additional

Hardware

On the comparison basis a better checkpoint technique in

different grid environment has been discussed.

3. Proposed Checkpointing Algorithm

Checkpointing schemes associate each local checkpoint

with a checkpoint sequence number and try to enforce

consistency among local checkpoints with the same

sequence number. This checkpointing schemes have the

easiness, recovery time advantages and low overhead over

other checkpointing schemes. Proposed checkpointing

algorithm reduces the checkpoint overhead compared to

previously suggested checkpointing algorithms and which

have a relatively short rollback distance in faulty situation.

In the proposed scheme, we use checkpoint sequence

number to take a message checkpoint. However, unlike the

other algorithms, only one message checkpoint can exist

http://www.computersciencejournals.com/

International Journal of Engineering in Computer Science http://www.computersciencejournals.com/

~ 61 ~

between two consecutive periodic checkpoints. Therefore,

our checkpointing algorithm has smaller number of

checkpoints than other checkpointing algorithms. Moreover,

like the other algorithms, the dependency among

checkpoints is removed by message checkpoints. In result,

our checkpointing algorithm has a relatively short rollback

distance in faulty situation. The algorithm has a better

performance than the others in terms of task completion

time in both of fault free and faulty situations. New

checkpointing algorithm is discussed in next section.

3.1 Checkpointing Algorithm

Step 1 The algorithm runs for n processes where the process value P(i) is varies from 0 to n-1.

Step 2 The flag value is initialized. If new checkpoint flag value is (CFV) =0 (False) that means there is no checkpoint flag in the

current interval and if the value is CFV =1 (True) that means there is a checkpoint flag in the current interval.

Step 3 After assigning the value of the process, start with while loop when process P(i) till the end.

Step 4 In the checkpoint, if the current time value of the process equals to the checkpoint time than check

If (CFV==0)

Take a stable checkpoint with current process state; Increase checkpoint number by 1;

Checkpoint increase by current time plus checkpoint and Set new checkpoint flag = false;

Else, if condition does not match take a stable checkpoint with new checkpoint

Step 5 After new checkpoint flag is checked, process P (i) send and receive the message and check If senders checkpoint number

is greater than current checkpoint number than again check

if (CFV==1)

Set current checkpoint number to senders;

else

Take a new checkpoint with current process state;

Set current checkpoint number to senders; And Set new checkpoint flag = True;

Step 6 At last, process received a message.

Step 7 If any failure occurs in between the execution, after resuming value pick from the memory and go to step 3.

3.2 Complexity Analysis of the Proposed Algorithm

The Complexity of the above algorithm is O(n). Because n

processes run n time within while loop. For each process

P(i), the if-else statements within the while loop gets

executed. Assuming that first if-else loop runs j times,

where j is a constant when the current time equals to the

checkpoint time. After that the process P(i) has to process

the received message if sender checkpoint number is greater

than the current checkpoint. The if-else construct runs k

times, where k is a constant and since the algorithm is

running for the n processes so the total complexity of the

algorithm is O(j+k)*n. which is approximately equal to the

O(n). The O(n) complexity of the algorithm is better to

implement any type of checkpointing algorithm in real time

environment. For the requirement for the implementation of

the new framework is given below.

3.3 Executor Algorithm

1. Start the Executor and import all the threads like System. Net. Sockets, System. Threading, and System.IO.

2. Initialize variables of Binary Reader and Writer, thread, Tcp Client Network Stream.

3. Start the Executor thread. Clint_thrd1. Start ()

4. Assign port number to socket and wait for the connection on the basis of same port number and connecting Manager IP Address.

tcp_client.Connect ("local host", 45)

5. if (new_connection connected=True) then

Connection established and sends Executor detail to Manager

Else Connection Fail. Again check for new connection

End if

6. After connection establish data Sending or receiving through the stream writer and stream reader and display the result through

the message box.

reader = New Binary Reader (net_stream)

writer = New Binary Writer (net_stream)

7. All the communication data is parallel stored in the temporary file and display the result at both the Manager and the Executor

site or after a specific time of checkpoint data will save at the permanent storage

If (e.Key Code = Keys. Enter) Then writer. Write (inputtxt.Text)

output txt.Text &= "Executor side:-" & input txt. Text & vbCr

RichTextBox2.Text += vbCrLf & "Executor side:-" & inputtxt.Text & vbCrLf

End If

8. If want to store data in the log file then saved data otherwise truncate data and terminate theconnection.RichTextBox1.

Load File("d:\file", Rich Text Box Stream Type.Plain Text)

9. We can see the hole save data record through the database summery record. Databse_summery.Show ()

10. After this if u want to new entry connection then go to entry detail otherwise abort the connection.

tcp_client.Close () and clint_thrd1.Abort ()

http://www.computersciencejournals.com/

International Journal of Engineering in Computer Science http://www.computersciencejournals.com/

~ 62 ~

3.4 Executor Algorithm

1. Start the Manager and import System.Net.Sockets, System.Threading, System.IO threads.

2. Initialize variables of BinaryReader, BinaryWriter, thread, sockets and new_connection, Network Stream,

Net.Sockets.TcpListener.

3. Run the Executor ser_thrd1.Start () thread.

4. Create tcp listener on the basis of assign port number to socket and wait for the connection to new Executor.

tcp_listn = New Net.Sockets.TcpListener (System.Net.IPAddress.Any, 45)

tcp_listn.Start ()

5. Establish new connection between Manager and Executor through TCP listener socket and

If (new_connection.connected=True) then

Connection established

Else

End if

Connection Fail. Again check for new connection

6. After establish the connection registered the Executor into the Executor table in Alchemi.NET.NET database and start

communication otherwise abort the connection.

7. Sending and receiving (read/write) data through the stream writer and stream reader and after the connection establish

display the result through the message box.

writer = New BinaryWriter (net_stream)

reader = New BinaryReader (net_stream) outputtxt.Text &= "Connection Established" & vbCr Dim recive_data As String

Do

recive_data = reader.ReadString

outputtxt.Text &= "Executor side:-" & recive_data & vbCr

Loop While (recive_data <> "terminate")

8. All the communication data is parallel stored in the temporary file and display the result at both the Manager and the

Executor site or after a specific time of checkpoint data will automatically saved in the permanent storage

If (e.KeyCode = Keys.Enter) Then writer. Write (inputtxt.Text)

outputtxt.Text &= "Manager Side:-" & inputtxt.Text & vbCr

End If

9. If want to store data in the log file then saved data otherwise truncate data and terminate the connection.

10. After this if u want to new entry connection then go to entry detail otherwise abort the connection.

tcp_listn.Stop ()

ser_thrd1.Abort ()

In this section, we have proposed the new communication

induced checkpointing algorithm which is use to make

Alchemi.NET fault tolerant. We have also described the

need of hardware and software requirement in the

implementation, programming language which is use for our

implementation work. After that we have discussed the

proposed and designed framework and described the

algorithm and flowchart, which is done, on the

Alchemi.NET middleware.

4. Experimental results

This section describes the implementation of Checkpointing

algorithm, in which data can be stored in permanent log file

on the basis of checkpointing, which has been proposed in

the previous section. An application developed in VB.Net,

C# (front end) and SQL SERVER (back end database). The

results are shown in the form of screen shots.

Alchemi.NET grid can be viewed as a virtual machine with

multiple processors. A grid Application can take advantage

of this by creating independent units of work to be executed

in parallel on the grid (each unit of work is executed by a

particular Executor).

These units of work are called grid threads and must be

instances of a class that is derived from

Alchemi.NET.Core.Owner, GThread. Code that is to be

executed on the grid is defined in this class's void Start ()

method.

Follow these steps to set up a development environment:

 Construct a minimal grid (1 Manager and 1 Executor)

on the development and test it by running Application.

 Download the Alchemi.NET SDK and extract to a

convenient location

 Locate Alchemi.NETCore.dll for referencing in

applications.

Checkpointing is implemented using the below mentioned

steps:

Step1: In this kind of application first check the status of the

Manager then, start application to scan port 9001 of the

remote system where Manager is running at regular interval

of time.

The code for this application is written in c#. The two main

classes used for this are:

‘Socket’ and ‘IP End Point’. User has to provide the IP

address of the system where Manager is running. In any

such case when the Manager fails due to some reason, data

is saved on the log tables. After recovering, it can again start

from the checkpoint created.

Step2: Creating the checkpoint Database Checkpoint is the

process of stored data in regular time intervals from memory

to permanent storage databases. Using checkpoint, small

copies of data stored by us into the database can be shared

by both Manager and Executor. The previous data records

are safely stored in log file, which is present on the executor

site. The database structure is replicated in the following

table. These tables maintain all the information regarding

executor, application and thread etc. that is presented in the

screen shots below.

http://www.computersciencejournals.com/

International Journal of Engineering in Computer Science http://www.computersciencejournals.com/

~ 63 ~

Table 4: Detail of running threads

Table 5: List of running application

 The interface of the Alchemi.NET executor has

three button first connect button for establish the

connection between Manager and the executor,

second disconnect button for terminate the

connection between them and the last one database

summery for shown the all communication which

was held between both. It can show the permanent

log file data that are stored in the disk

 The interface of the Alchemi.NET Manager three

buttons first is the Start Manager button, for

starting the Manager. Second is the stop button for

terminating the connection between them and third

button for displaying new form in which we can

enter the executor details to store in the executor

table. It also has two rich text box, one for input

query in which we can communicate to executor

and other one shown is the resultant summary

which shows all communication which was held

between both. It saves data on temporary basis

which is in the memory.

 The Alchemi.NET Manager and Executor have

started and they are further waiting for the

heartbeat signal for establishing the connection

with each other for further processing.

 The established connection at the Manager and

further acknowledge should be displayed on the

Executor site.

 The entry form of the particular executor is

currently connected to the Manager. It has all the

entries filled according to executor requirement.

There are two buttons, one for submitting the entry

in the table and other for the clearing entry if any

field is filled incorrectly. After filling the entry in

executor form all the data is stored in the executor

database table in the Alchemi.NET database.

 The successful record added in the executor table.

This is permanent storage of data entry.

 Messages sent between Manager and executor like

First send the message from the input query and

temporary store all data shown at output result.

 The message box yes for saving all the

communication in permanent log file and No for

truncating data between Manager and executor.

 The database summary forms in which we can see

the entire log file data at Manager Site, which is

permanently stored.

 The message box, yes for terminating the

connection at the Manager site and No for further

processing.

 The message box after clicking yes in previous

form and after pressing OK on the message box,

above connection is aborted.

http://www.computersciencejournals.com/

International Journal of Engineering in Computer Science http://www.computersciencejournals.com/

~ 64 ~

Fig 1: Shows Four Executors running while executing application

Fig 2: One-Executor stops while the application is running

Above Figures 1 and 2 shows the on line Executor who are

connected to the Manager while running the application.

Some of the Executor who is red in the figure is ideal and

ready to execute the job/application and other gray in color

Executor shows that they are not ideal at the time of any

application running.

Table 6: Executor table after storing executor data

Table 6 shows the entire executor list, which were

connected to the Manager. The table has all the record about

the executor with the entire field that is used by the

executor.

This section deals with the implementation part of Paper

work. After giving the basic requirements for

implementation, we have proposed the system that deals

with the problems found in Alchemi.NET.NET based

computational grids has been proposed. The system is

implemented using C# as programming language and MS

SQL Server as Database. Considering different test cases the

experimental evaluation was also done for the implemented

system. In the next section concludes our Paper work and

gives future scope of it.

5. Conclusion and future work

The sharing of computational resources is a main motivation

for constructing Computational Grids in which multiple

http://www.computersciencejournals.com/

International Journal of Engineering in Computer Science http://www.computersciencejournals.com/

~ 65 ~

computers are connected by a communication network. Due

to the instability of grids, the fault detection and fault

recovery is a very critical task that must be addressed. The

need for fault tolerance increases as the number of

processors and the duration of computation increases. In this

Paper, we investigated the issues and challenges involved in

dealing with faults in Alchemi.NET middleware have been

investigated and the checkpoint algorithm in Alchemi.NET

for dealing with various kinds of faults has been

implemented. Further the efficiency of our proposed system

under various conditions has been evaluated.

In a heterogeneous computing environment like Grid, a suite

of different machines ranging from personal computer to

supercomputer is loosely inter-connected to provide a

variety of computational capabilities to execute collections

of application tasks that have diverse requirements. These

kinds of large scale high performance distributed services

have recently received substantial interest from both

research as well as industrial point of view. However, an

important research problem for such systems is the lack of

fault tolerance system. The heterogeneous and dynamic

nature of grids makes them more prone to failures than

traditional computational platforms. So, the system

managing such infrastructures needs to be smart and

efficient to overcome the challenge of fault detection and

recovery.

5.1 Main Contributions

 Studied the Fault Tolerance in different grid

middleware’s and found most common kind of failures

that can let the Alchemi.NET grid to work improperly.

 Alchemi.NET based grid has been set up in the

departments.

 Various existing fault tolerance mechanisms already

present in the setup grid are identified. After studying

the internals of Alchemi.NET, different shortcomings

that are there in Alchemi.NET for handling the faults

dynamically has been identified.

 On the basis of identified shortcomings, proposed and

updated fault tolerance in Alchemi.NET middleware

with the help of checkpointing algorithm.

 Implemented checkpoint concept that will help in

avoiding the grid to become inaccessible if the Manager

or Executor fails.

6. References

1. N Jain, N Rathore, A Mishra. An Efficient image

forgery detection using orthogonal wavelet transform

and improved relevance vector machine, wireless

personal communication, springer Publication-New-

York (USA) IF-1.200. 2018; 101(4):1983-2008.

2. N Rathore. Performance of hybrid load balancing

algorithm in distributed web server system, wireless

personal communication, springer Publication-New-

York (USA) IF-1.200. 2018; 101(4):1233-1246.

3. N Jain, N Rathore, A Mishra. An efficient image

forgery detection using biorthogonal wavelet transform

and improved relevance vector machine with some

attacks, Interciencia Journal. 2017; 42(11):95-120.

4. N Rathore. Dynamic threshold based load balancing

algorithms, wireless personal communication, springer

Publication-New-York (USA), 2016; 91(1):151-185.

5. N Rathore, I Chana. Job migration policies for grid

environment, wireless personal communication,

springer Publication-New-York (USA) IF -0.979. 2016;

89(1):241-269.

6. Rathore, Neeraj, Inderveer Chana. Variable threshold-

based hierarchical load balancing technique in

Grid, engineering with computers. 2015; 31.3:597-615.

7. Vishal Sharma, Rajesh Kumar, Neeraj Kumar Rathore.

Topological broadcasting using parameter sensitivity

based logical proximity graphs in coordinated ground-

flying ad hoc networks, Journal of wireless mobile

networks ubiquitous computing and dependable

applications (JoWUA), Scopus indexed. 2015; 6(3):54-

72.

8. Rathore, Neeraj, Inderveer Chana. Load balancing and

job migration techniques in grid: a survey of recent

trends, wireless personal communications. 2014;

79.3:2089-2125.

9. Rathore, Neeraj, Inderveer Chana. Job migration with

fault tolerance based QoS scheduling using hash table

functionality in social Grid computing, Journal of

intelligent & fuzzy systems. 2014; 27.6:2821-2833.

10. Neeraj Kumar Rathore, Farah Khan. Internet of things:

A review article, Journal of cloud computing (JCC),

ISSN Print: 2349-6835, ISSN Online: 2350-1308,

IF=0.333. 2018; 5(1):20-25.

11. Neeraj Kumar Rathore, Farah Khan. Survey of IoT,

Journal of cloud computing (JCC), ManTech

Publication. 2018; 1(1):1-13.

12. Neeraj Kumar Rathore, Pramod Kumar Singh. A

comparative analysis of fuzzy based load balancing

algorithm, Journal of computer science (JCS). 2017;

5(2):23-33.

13. Neeraj Kumar Rathore, Harikesh Singh. Analysis of

grid simulators architecture, Journal on mobile

applications and technologies (JMT). 2017; 4(2):32-41.

14. Neeraj Kumar Rathore. Checkpointing: fault tolerance

mechanism, Journal on cloud computing (JCC). 2016;

3(4):27-34.

15. Neeraj Kumar Rathore. A review towards: Load

balancing techniques, Journal on power systems

engineering (JPS). 2017; 4(4):47-60.

16. Neeraj Kumar Rathore. Faults in Grid, International

Journal of software and computer science engineering,

Mantech Publiations. 2016; 1(1):1-19.

17. Neeraj Kumar Rathore. Installation of Alchemi NET in

computational grid, Journal on computer science

(JCOM). 2016; 4(2):1-5.

18. Neeraj Kumar Rathore. Ethical hacking & security

against cybercrime, Journal on information technology

(JIT). 2016; 5(1):7-11.

19. Neeraj Kumar Rathore. Efficient agent based priority

scheduling and load balancing using fuzzy logic in grid

computing, Journal on computer science (JCOM).

2015; 3(3):11-22.

20. Neeraj Kumar Rathore. Map reduce architecture for

grid, Journal on software engineering (JSE). 2015;

10(1):21-30.

21. Neeraj Kumar Rathore. GridSim installation and

implementation process, Journal on cloud computing

(JCC). 2015; 2(4):29-40.

22. Neeraj Kumar Rathore, Inderveer Chana. Report on

hierarchal load balancing technique in grid

environment, Journal on information technology (JIT),

ISSN Print: 2277-5110. 2013; 2(4):21-35.

23. Neeraj Kumar Rathore, Inderveer Chana.

http://www.computersciencejournals.com/

International Journal of Engineering in Computer Science http://www.computersciencejournals.com/

~ 66 ~

Checkpointing algorithm in alchemi.NET, Pragyaan:

Journal of information technology, IMS Dehradun,

ISSN No: 0974-5513, IEEE, CSI and MPCET

Dehradun. 2010; 8(1):32-38.

24. Neelesh Jain, Neeraj Kumar Rathore, Amit Mishra. An

Efficient image forgery detection using biorthogonal

wavelet transform and singular value decomposition in

5th International conference on advance research

applied science, environment, agriculture &

entrepreneurship development (ARASEAED), Bhopal

organized & sponsored by Janparishad, JMBVSS &

International council of people at Bhopal (M.P.) India,

held on 04-06, 2017, 274-281.

25. Neeraj Kumar Rathore, I Chana. A sender initiate based

hierarchical load balancing technique for grid using

variable threshold value in International conference

IEEE-ISPC, ISBN- 978-1-4673-6188-0. 2013; 1-6:26-

28.

26. Neeraj Kumar Rathore, I Chana. A Cognitative analysis

of load balancing technique with job migration in grid

environment, world congress on information and

communication technology (WICT), Mumbai, IEEE

proceedings paper, ISBN-978-1-4673-0127-5, 2011,

77-82.

27. Neeraj Kumar Rathore. Efficient load balancing

algorithm in grid in 30th M.P young scientist congress,

Bhopal, M.P, 2015, 56.

28. Neeraj Kumar Rathore. Efficient hierarchical load

balancing technique based on grid in 29th M.P young

scientist congress, Bhopal, M.P, 2014, 55, Feb 28.

29. Rohini Chouhan, Neeraj Kumar Rathore. Comparision

of load balancing technique in grid, 17th Annual

conference of Gwalior Acadmy of mathematical

science and Natonal symposium on computational

Mathamatics & Information Technology, JUET, Guna,

M.P, 2012, 7-9.

30. Neeraj Kumar Rathore, Inderveer Chana. Fault

tolerance algorithm in alchemi.NET Middleware,

national conference on education & research

(ConFR10), Third CSI national conference of CSI

Division V, Bhopal Chapter, IEEE Bombay, and

MPCST Bhopal, organized by JUIT, India, 6-7th, 2010.

31. Neeraj Kumar Rathore. Inderveer Chana.

Checkpointing algorithm in Alchemi.NET, Annual

conference of Vijnana Parishad of India and national

symposium recent development in applied mathematics

& information technology, JUET, Guna, M.P, 2009.

32. Neeraj Kumar Rathore, Inderveer Chana. Comparative

analysis of checkpointing, PIMR third National IT

conference, IT enabled practices and emerging

management paradigm book and category is

communication technologies and security issues, Topic

No/Name-46, prestige management and research,

Indore, (MP) India, 2008; 32-35:46.

33. Neeraj Kumar Rathore, Inderveer Chana. An Efficient

load balancing technique for grid in Scholar's Press,

Mauritius, Project id: 6621, ISBN: 978-3-330-65134-0,

2018.

34. Neeraj Kumar Rathore and Pramod Singh. An Efficient

Load Balancing Algorithm in Distributed Networks

Lambert Academic Publication House (LBA),

Germany, ISBN: 978-3-659-78892-5, 2016.

35. Neeraj Kumar Rathore, Rohini Chohan. An

Enhancement of GRIDSIM architecture with load

balancing in Scholar's Press, Project Id: 4900, ISBN:

978-3-639-76989-0, 2016.

36. Neeraj Kumar Rathore, Anuradha Sharma. Efficient

dynamic distributed load balancing technique in

Lambert Academic Publication House, Germany,

Project ID: 127478, ISBN No: 978-3-659-78288-6,

2015.

37. Neeraj Kumar Rathore, Inderveer Chana.

Checkpointing algorithm in Alchemi.NET in Lambert

Academic Publication House (LBA), Germany ISBN-

10:3843361371, ISBN-13:978-3843361378, 2010.

38. Neelesh Jain, Neeraj Kumar Rathore, Amit Mishra. An

Efficient image forgery detection using Biorthogonal

wavelet transform and singular value decomposition in

5th International conference on advance research

applied science, environment, agriculture &

entrepreneurship development (ARASEAED), Bhopal

organized & sponsored by Janparishad, JMBVSS &

International council of people at Bhopal (M.P) India,

held on 04-06, 2017, 274-281.

39. Neeraj Kumar Rathore, Inderveer Chana. A Cogitative

analysis of load balancing technique with job migration

in grid environment, World congress on information

and communication technology (WICT), Mumbai,

IEEE, book ISBN: 978-1-4673-0127-5, book e-ISBN:

978-1-4673-0126-8, 978-1-4673-0125-1, 2011, 77-82.

DOI10.1109/WICT.2011.6141221.

40. Neeraj Kumar Rathore, Inderveer Chana.

Checkpointing algorithm in Alchemi.NET, Pragyaan:

Journal of information technology, IMS Dehradun.

ISSN No: 0974-5513, IEEE, CSI, MPCET Dehradun,

2010; 8(1):32-38.

41. Neeraj Kumar Rathore, Inderveer Chana. Comparative

analysis of checkpointing, PIMR Third National IT

conference, IT enabled practices and emerging

management paradigm book and category is

Communication technologies and security issues, Topic

No/Name-46, prestige management and research,

Indore, (MP) India, 2008, 32-35.

42. Rathore NK, I Chana. A cogitative analysis of load

balancing technique with job migration in grid

environment. IEEE proceedings, 2011, 77-82.

http://www.computersciencejournals.com/

